Berger R.D., Akselrod S., Gordon D., Cohen R.J. 1986.
An efficient algorithm for spectral analysis of heart
rate variability. IEEE Trans Biomed Eng. 33(9):900-4.
Bruce, E. N., M. D. Goldman, and J. Mead. A digital
computer technique for analyzing respiratory muscle
EMGs. J. Appl. Physiol. 43: 551-556, 1977
Efron, B. 1981. "Nonparametric estimates of standard
error: The jackknife, the bootstrap and other methods",
Biometrika, 68, 589-599.
EN1064 2005. Health informatics. Standard
communication protocol. Computer-assisted
electrocardiography
Goncharova, I.I. and Barlow, J.S. 1990. Changes in EEG
mean frequency and spectral purity during
spontaneous alpha blocking. Electroencephalogr Clin
Neurophysiol. 76(3):197-204.
Hemmelmann C, Horn M, Suesse T, Vollandt R, Weiss S.
2005. New concepts of multiple tests and their use for
evaluating high-dimensional EEG data. J Neurosci
Methods. 142(2):209-17.
Hjorth, B. 1975. Time Domain Descriptors and their
Relation to particulare Model for Generation of EEG
activity. in G. Dolce, H. Kunkel: CEAN Computerized
EEG Analysis, Gustav Fischer, p.3-8.
Hofer, E., Keplinger, F., Thurner, T., Wiener, T., Sanchez-
Quintana, D., Climent, V., Plank, G., 2006. A new
floating sensor array to detect electric near fields of
beating heart preparations. In Biosens. Bioelectron.,
vol. 21, pp 2232-2239.
Mateo, J., Laguna, P. 2003. Analysis of Heart Rate
Variability in Presence of Ectopic Beats Using the
Heart Timing Signal. IEEE Transactions on
biomedical engineering, 50(3): 334-343.
Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett
M. 2004. Identifying true brain interaction from EEG
data using the imaginary part of coherency. Clin
Neurophysiol.115(10):2292-307.
Nygards, M.-E. and Sörnmo, L. 1983. Delineation of the
QRS complex using the envelope of the e.c.g.-Med. &
Biol. Eng. & Comput., 21, 538-547.
Plank, G., Hofer, E., 2000. Model study of vector-loop
morphology during electrical mapping of microscopic
conduction in cardiac tissue. In Ann. Biomed. Eng.,
vol. 28, pp 1244-1252.
Plank, G., Vigmond, E., Leon, L.J., Hofer, E., 2003.
Cardiac near-field morphology during conduction
around a microscopic obstacle – a computer
simulation study. In Ann. Biomed. Eng., vol. 31, pp
1206-1212.
Platt, R.S., Hajduk, E.A., Hulliger, M., Easton,P.A. 1998.
A modified Bessel filter for amplitude demodulation
of respiratory electromyograms. J. Appl. Physiol.
84(1): 378-388.
Pop-Jordanova, N. and Jordan Pop-Jordanov J. 2005.
Spectrum-weighted EEG frequency ("Brainrate") as a
quantitative indicator of arousal Contributions, Sec.
Biol. Med. Sci., MASA, XXVI, 2: 35 - 42
Schlögl, A., Kemp, B., Penzel, T., Kunz, D., Himanen, S.-
L., Värri, A., Dorffner, G., Pfurtscheller, G., 1999a.
Quality Control of polysomnographic Sleep Data by
Histogram and Entropy Analysis. Clin. Neurophysiol.
110(12): 2165 - 2170.
Schlögl, A., Filz, O., Ramoser, H., Pfurtscheller, G.
1999b. GDF version 1 - A general dataformat for
biosignals, available at:
http://www.dpmi.tugraz.at/schloegl/matlab/eeg/gdf4/T
R_GDF.pdf
Schlögl, A. 2000. The electroencephalogram and the
adaptive autoregressive model: theory and
applications. Shaker Verlag, Aachen, Germany.
Schlögl, A. 2006a. Comparison of Multivariate
Autoregressive Estimators. Signal processing. 86(9):
2426-9.
Schlögl, A. 2006b. GDF version 2 - A general dataformat
for biosignals. http://arxiv.org/abs/cs.DB/0608052
Schlögl, A. and Supp, G. 2006. Analyzing event-related
EEG data with multivariate autoregressive parameters.
(Eds.) C. Neuper and W. Klimesch, Event-related
Dynamics of Brain Oscillations. Analysis of dynamics
of brain oscillations: methodological advances.
Progress in Brain Research 159: 135 – 147.
Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R.,
Leeb, R., Pfurtscheller, G. 2007a. A fully automated
correction method of EOG artifacts in EEG
recordings. Clin. Neurophys. 118(1):98-104.
Schlögl, A., Chiarugi, F., Cervesato, E Apostolopoulos,
E., Chronaki, C.E.. 2007b. Two-Way Converter
between the HL7 aECG and SCP-ECG Data Formats
Using BioSig.
Conference on Computers In Cardiology,
Taskforce Heart Rate Variability: Standards of
Measurement, physilogical interpretation and clinical
use. Taskforce of the European Society for Cardiology
and the North American Society of Pacing and
Electrophysiology. European Heart Journal (1996)
17, 354-381.
Vidaurre, C., Schlögl, A.,Cabeza, R., Scherer, R.
Pfurtscheller, G. 2006. A fully on-line adaptive BCI,
IEEE Trans. Biomed. Eng., 53(8): 1214–1219.
Wackermann, J. 1999. Towards a quantitative
characterization of functional states of the brain: from
the non-linear methodology to the global linear
descriptor. International Journal of Psychophysiology,
34: 65-80.
Wiener, T., Thurner, T., Prassl, A.J., Plank, G., Hofer, E.,
2007. Accuracy of local conduction velocity
determination from non-fractionated cardiac activation
signals. In EMBC’07, 29th Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society.
BIOSIG - Standardization and Quality Control in Biomedical Signal Processing Using the BioSig Project
409