A NEW FRAMEWORK FOR REAL-TIME ADAPTIVE FUZZY MONITORING AND CONTROL FOR HUMANS UNDER PSYCHOPHYSIOLOGICAL STRESS

A. Nassef, C. H. Ting, M. Mahfouf, D. A. Linkens, P. Nickel, G. R. J. Hockey, A. C. Roberts

2008

Abstract

This paper proposes a new framework for the on-line monitoring and adaptive control of psychophysiological markers relating to humans under stress. The starting point of this framework relates to the assessment of the so-called operator functional state (OFS) using physical as well as psychological measures. An adaptive neural-fuzzy model linking Heart-Rate Variability (HRV) and Task Load Index (TLI) with the subjects’ optimal performance has been elicited and validated via a series of real-life experiments involving process control tasks simulated on an Automation-Enhanced Cabin Air Management System (aCAMS). The elicited model has been used as the basis for an on-line control system, whereby the model predictions which indicate whether the actual system is in error or not, have been used to modify the level of automation which the system may operates under.

References

  1. Fehrenberg, J., and Wientjes, C. W. J., 2000, 'Recording methods in applied environments' in Engineering psychology: issues and applications, ed. R. W. Backs & W. Boucsein W, Erlbaum, Mahawah, pp. 111-136.
  2. Geveins, A. & Smith, M. E., 1999, 'Detecting transient cognitive impairment with EEG pattern recognition methods' Aviation, Space, and Environmental Medicine, vol. 70, pp. 1018-1024.
  3. Gevins, A., Smith, E., McEvoy, L., & Yu, D., 1997, 'High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty type of processing, and practice' Cerebral Cortex., vol. 7, pp. 374-385.
  4. Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization and Machine Learning, AddisonWesley.
  5. Hockey, G. R. J., Gaillard, A. W. K. & Burov, O., 2003, Operator functional State: the assessment and prediction of human performance degradation in complex tasks, IOS Press, Amesterdam, The Netherlands.
  6. Hockey, G. R. L., Wastell, D., & Saucer J., 1998, 'Effects of sleep deprivation and user-interface on complex performance: a multilevel analysis of compensatory control' Human Factors, vol. 40, pp. 233-253.
  7. Jang, J., 1993, 'ANFIS: Adaptive-network-based fuzzy inference system' IEEE Transations on Systems, Man and Cybernetics, vol. 23, pp. 665-685.
  8. Jasper, H. H., 1958, 'Report of the committee on methods of clinical examination in electroencephalography' Electroencephalography and Clinical Neurophysiology, vol. 10, pp. 370-375.
  9. Kaber, D. B., Riley, J. M., Kheng-Wooi, T. & Endsley, M. R., 2001, 'On the design of adaptive automation for complex systems' International Journal of Cognitive Ergonomics, vol. 5, pp. 37-57.
  10. Lorenz, B. and Parasuraman, R., 2003, 'Human operator functional state in automated systems: the role of compensatory control strategies' In Operator functional State: the assessment and prediction of human performance degradation in complex tasks, ed. G. R. J. Hokey, A. W. K. Gaillard & O. Burov, pp. 224-237, IOS Press, Amesterdam, The Netherlands.
  11. Lorenz, B., 2002, 'Detection and prediction of an automation-induced state of impaired operator competence' In Proceedings of NATO ARW on Operator Functional State, Il Ciocco.
  12. Mahfouf, M., Zhang, J., Linkens, D. A. Nassef, A., Nickel, P., Hockey, G. R. J., & Roberts, A.C., 2006, Adaptive Fuzzy Approaches to Modelling Operator Functional States in a Human-Machine Process Control System. In Proceedings of FUZZIEEE2007, London, UK, July 23-26..
  13. Mamdani, E. H, 1974, 'Applications of fuzzy algorithms for control of simple dynamic plant' In Proceedings IEEE, (121), pp. 1585-1588.
  14. Nickel, P., Roberts, A. C., & Hockey, G. R. J., 2005, Assessment of high risk operator functional state markers in dynamical systems - preliminary results and implications In Proc. of Human Factors and Ergonomics Society Europe Chapter Annual Meeting 2005, Turin, Italy, Oct. 26-28.
  15. Zadeh, L. A., 1965, 'Fuzzy sets' Information and Control, vol. 8, pp. 338-353.
  16. Zhang, J., Nassef, A., Mahfouf, M., Linkens, D. A., ElSamahy, E., Hockey, G. R. J., Nickel, P. & Roberts, A. C., 2006. Modelling and analysis of HRV under physical and mental workloads. In Proc. of the 6th IFAC Symposium on Modelling and Control in Biomedical Systems, Reims, France, Sept. 20-22, pp. 189-194.
Download


Paper Citation


in Harvard Style

Nassef A., H. Ting C., Mahfouf M., A. Linkens D., Nickel P., R. J. Hockey G. and C. Roberts A. (2008). A NEW FRAMEWORK FOR REAL-TIME ADAPTIVE FUZZY MONITORING AND CONTROL FOR HUMANS UNDER PSYCHOPHYSIOLOGICAL STRESS . In Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 2: BIOSIGNALS, (BIOSTEC 2008) ISBN 978-989-8111-18-0, pages 320-325. DOI: 10.5220/0001066003200325


in Bibtex Style

@conference{biosignals08,
author={A. Nassef and C. H. Ting and M. Mahfouf and D. A. Linkens and P. Nickel and G. R. J. Hockey and A. C. Roberts},
title={A NEW FRAMEWORK FOR REAL-TIME ADAPTIVE FUZZY MONITORING AND CONTROL FOR HUMANS UNDER PSYCHOPHYSIOLOGICAL STRESS},
booktitle={Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 2: BIOSIGNALS, (BIOSTEC 2008)},
year={2008},
pages={320-325},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001066003200325},
isbn={978-989-8111-18-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Bio-inspired Systems and Signal Processing - Volume 2: BIOSIGNALS, (BIOSTEC 2008)
TI - A NEW FRAMEWORK FOR REAL-TIME ADAPTIVE FUZZY MONITORING AND CONTROL FOR HUMANS UNDER PSYCHOPHYSIOLOGICAL STRESS
SN - 978-989-8111-18-0
AU - Nassef A.
AU - H. Ting C.
AU - Mahfouf M.
AU - A. Linkens D.
AU - Nickel P.
AU - R. J. Hockey G.
AU - C. Roberts A.
PY - 2008
SP - 320
EP - 325
DO - 10.5220/0001066003200325