NEW INVARIANT DESCRIPTORS BASED ON THE MELLIN TRANSFORM

S. Metari, François Deschênes

2008

Abstract

In this paper we introduce two new classes of radiometric and combined radiometric-geometric invariant descriptors. The first class includes two types of radiometric descriptors. The first type is based on the Mellin transform and the second one is based on central moments. Both descriptors are invariant to contrast changes and to convolution with any kernel having a symmetric form with respect to the diagonals. The second class contains two subclasses of combined descriptors. The first subclass includes central-moment based descriptors invariant simultaneously to translations, to uniform and anisotropic scaling, to stretching, to contrast changes and to convolution. The second subclass includes central-complex-moment based descriptors invariant simultaneously to similarity transformation and to contrast changes. We apply those invariants to the matching of geometrically transformed and/or blurred images.

References

  1. Belkasim, S. O., Shridhar, M., and Ahmadi, M. (1991). Pattern recognition with moment invariants - a comparative study and new results. Pattern Recognition, 24(12):1117-1138.
  2. Chaudhuri, S. and Rajagopalan, A. N. (1999). Depth from Defocus: A Real Aperture Imaging Approach. Springer Verlag.
  3. Davies, B. (2002). Integral Transforms and their Applications - Third edition. Springer.
  4. Flusser, J. (2006). Moment invariants in image analysis. In Proceedings of the International Conference on Computer Science. ICCS 2006, pages 196-201.
  5. Flusser, J. (2007). Moments and Moment Invariants in Image Analysis. In Proceedings of the International Conference on Image Processing (to appear). San Antonio, Texas, USA. September 16-19.
  6. Flusser, J., Boldya, J., and Zitová, B. (2003). Moment forms invariant to rotation and blur in arbitrary number of dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2):234-246.
  7. Flusser, J. and Suk, T. (1993). Pattern Recognition by Affine Moment Invariants. Pattern Recognition, 26(1):167- 174.
  8. Flusser, J. and Suk, T. (1997). Classification of degraded signals by the method of invariants. Signal Processing, 60(2):243-2492.
  9. Flusser, J. and Suk, T. (1998). Degraded image analysis: An invariant approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(6):590-603.
  10. Flusser, J., Suk, T., and Saic, S. (1995). Image feature invariant with respect to blur. Pattern Recognition, 28(11):1723-1732.
  11. Flusser, J. and Zitová, B. (1999). Combined invariants to linear filtering and rotation. International Journal of Pattern Recognition and Artificial Intelligence, 13(8):1123-1136.
  12. Hu, M. K. (1962). Visual pattern recognition by moment invariants. Institute of Radio Engineers. Transactions. Information Theory, 8(2):179-187.
  13. Jahne, B. (2005). Digital Image Processing: Concepts, Algorithms, and Scientific Applications. Springer.
  14. Katsaggelos, A. K. (1991). Digital Image Restoration. Springer-Verlag, New York.
  15. Korevaar, J. (2004). Tauberian Theory - A Century of Developments. Springer - Verlag.
  16. Metari, S. and Deschênes, F. (2007a). A New Convolution Kernel for Atmospheric Point Spread Function Applied to Computer Vision. In proceedings of the Eleventh IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil, October 14-20.
  17. Metari, S. and Deschênes, F. (2007b). New Classes of Radiometric and Combined Invariants inspired by Mellin Transform. Technical Report no. 20, 30 pages, Université de Sherbrooke, Sherbrooke, Québec, Canada.
  18. Mindru, F., Moons, T., and Gool, L. V. (1999). Recognizing color patterns irrespective of viewpoint and illumination. In proceedings of IEEE Computer Vision Pattern Recognition, 1:368-373.
  19. Reiss, T. H. (1991). The revised Fundamental Theorem of Moment Invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8):830-834.
  20. Stern, A., Kruchakov, I., Yoavi, E., and Kopeika, S. (2002). Recognition of motion-blurred images by use of the method of moments. Applied Optics, 41(11):2164- 2171.
  21. Suk, T. and Flusser, J. (2003). Combined blur and affine moment invariants and their use in pattern recognition. Pattern Recognition, 36(12):2895-2907.
  22. Teh, C. H. and Chin, R. T. (1988). On image analysis by the method of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4):496-513.
  23. Van Gool, L., Moons, T., and Ungureanu, D. (1996). Affine/photometric invariants for planar intensity patterns. In proceedings of the 4th European Conference on Computer Vision, 1:642-651.
  24. Zayed, A. I. (1996). Handbook of Function and Generalized Function Transformations. CRC Pr I Llc.
  25. Zisserman, A. and Hartley, R. I. (2003). Multiple View Geometry in Computer Vision. Cambridge University Press.
Download


Paper Citation


in Harvard Style

Metari S. and Deschênes F. (2008). NEW INVARIANT DESCRIPTORS BASED ON THE MELLIN TRANSFORM . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 13-21. DOI: 10.5220/0001072200130021


in Bibtex Style

@conference{visapp08,
author={S. Metari and François Deschênes},
title={NEW INVARIANT DESCRIPTORS BASED ON THE MELLIN TRANSFORM},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={13-21},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001072200130021},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - NEW INVARIANT DESCRIPTORS BASED ON THE MELLIN TRANSFORM
SN - 978-989-8111-21-0
AU - Metari S.
AU - Deschênes F.
PY - 2008
SP - 13
EP - 21
DO - 10.5220/0001072200130021