Figure 9: Continuous skeletons: (a) leaf1, (b) room,
(c) Billygoat (external), (d) Billygoat (internal).
Figure 10: The fragment of the skeleton for “neuron”.
4. Running time of continuous skeletonization
algorithm is less by at least an order than that of the
best samples of discrete skeletonization algorithms.
The downside of application of continuous
skeleton construction algorithm is the complexity of
its software implementation which demands rather
refined programming technique.
ACKNOWLEDGEMENTS
The authors thank Dr. R.Strzodka who has granted
us image samples for experiments. Also authors are
grateful to the Russian Foundation of Basic
Research, which has supported this work (grant 05-
01-00542).
REFERENCES
Bai, X., Latecki, L.J., Liu, W.-Y, 2007. Skeleton pruning
by contour partitioning with discrete curve evolution.
IEEE transactions on pattern analysis and machine
intelligence, vol. 29, No. 3, March 2007.
Blum, H., 1967. A transformation for extracting new
descriptors of shape. In Proc. Symposium Models for
the perception of speech and visual form, MIT Press
Cambridge MA, 1967.
Costa, L., Cesar, R., 2001. Shape analysis and
classification, CRC Press.
Deng, W., Iyengar, S., Brener, N., 2000. A fast parallel
thinning algorithm for the binary image
skeletonization. The International Journal of High
Performance Computing Applications, 14, No. 1,
Spring 2000, pp. 65-81.
Fortune S., 1987. A sweepline algorithm for Voronoi
diagrams. Algorithmica, 2 (1987), pp. 153-174.
Klein, R., Lingas, A., 1995. Fast skeleton construction. In
Proc. 3
rd
Europ. Symp. on Alg. (ESA’95), 1995.
Lagno, D., Sobolev, A., 2001. Модифицированные
алгоритмы Форчуна и Ли скелетизации
многоугольной фигуры. In Graphicon’2001,
International Conference on computer graphics,
Moscow, 2001 (in Russian).
Lee, D., 1982. Medial axis transformation of a planar
shape. IEEE Trans. Pat. Anal. Mach. Int. PAMI-4(4):
363-369, 1982.
Manzanera, A., Bernard, T., Preteux, F., Longuet, B.,
1999. Ultra-fast skeleton based on an isotropic fully
parallel algorithm. Proc. of Discrete Geometry for
Computer Imagery, 1999.
Mestetskiy, L., 1998. Continuous skeleton of binary raster
bitmap. In Graphicon’98, International Conference on
computer graphics, Moscow, 1998 (in Russian).
Mestetskiy, L., 2000. Fat curves and representation of
planar figures. Computers & Graphics, vol.24, No. 1,
2000, pp.9-21.
Mestetskiy, L., 2006. Skeletonization of a multiply
connected polygonal domain based on its boundary
adjacent tree. In Siberian journal of numerical
mathematics, vol.9, N 3, 2006, 299-314, (in Russian).
Ogniewicz, R., Kubler, O., 1995. Hierarchic Voronoi
Skeletons. Pattern Recognition, vol. 28, no. 3, pp.
343-359, 1995.
Smith R., 1987. Computer processing of line images: A
survey. Pattern recognition, vol. 20, no.1, pp.7-15,
1987.
Srinivasan, V., Nackman, L., Tang, J., Meshkat, S., 1992.
Automatic mesh generation using the symmetric axis
transform of polygonal domains, Proc. of the IEEE, 80
(9) (1992), pp. 1485–1501.
Strzodka, R., Telea, A., 2004. Generalized Distance
Transforms and Skeletons in Graphics Hardware. Joint
EUROGRAPHICS – IEEE TCVG Symposium on
Visualization (2004).
Yap C., 1987. An O(n log n) algorithm for the Voronoi
diagram of the set of simple curve segments. Discrete
Comput. Geom., 2(1987), pp. 365-393.
(a)
(b)
(c)
(d)
VISAPP 2008 - International Conference on Computer Vision Theory and Applications
258