REFERENCES
Baker, S. and Matthews, I. (2001). Equivalence and ef-
ficiency of image alignment algorithms. In Com-
puter Vision and Pattern Recognition, volume 1, pages
1090–1097.
Berg, T., Berg, A., Edwards, J., Maire, M., White, R., Teh,
Y.-W., Learned-Miller, E., and Forsyth, D. (2004).
Names and faces in the news. In Computer Vision and
Pattern Recognition, volume 2, pages 848–854.
Cootes, T., Edwards, G., and Taylor, C. (2001). Active ap-
pearance models. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 23(6):681–685.
Duffner, S. and Garcia, C. (2005). A connexionist ap-
proach for robust and precise facial feature detection
in complex scenes. In Fourth International Sympo-
sium on Image and Signal Processing and Analysis
(ISPA), pages 316–321, Zagreb, Croatia.
Edwards, G., Taylor, C., and Cootes, T. (1998). Interpreting
face images using active appearance models. In Auto-
matic Face and Gesture Recognition, pages 300–305.
Fukushima, K. (1975). Cognitron: A self-organizing mul-
tilayered neural network. Biological Cybernetics,
20:121–136.
Garcia, C. and Delakis, M. (2004). Convolutional face
finder: A neural architecture for fast and robust face
detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(11):1408 – 1423.
Hu, C., Feris, R., and Turk, M. (2003). Active wavelet net-
works for face alignment. In British Machine Vision
Conference, UK.
Hubel, D. and Wiesel, T. (1962). Receptive fields, binocu-
lar interaction and functional architecture in the cat’s
visual cortex. Journal of Physiology, 160:106–154.
Jia, K., Gong, S., and Leung, A. (2006). Coupling face
registration and super-resolution. In British Machine
Vision Conference, pages 449–458, Edinburg, UK.
LeCun, Y. (1989). Generalization and network design
strategies. In Pfeifer, R., Schreter, Z., Fogelman, F.,
and Steels, L., editors, Connectionism in Perspective,
Zurich.
LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard,
R., Hubbard, W., and Jackel, L. (1990). Handwritten
digit recognition with a back-propagation network. In
Touretzky, D., editor, Advances in Neural Information
Processing Systems 2, pages 396–404. Morgan Kauf-
man, Denver, CO.
Li, S., ShuiCheng, Y., Zhang, H., and Cheng, Q. (2002).
Multi-view face alignment using direct appearance
models. In Automatic Face and Gesture Recognition,
pages 309–314.
Martinez, A. (2002). Recognizing imprecisely localized,
partially occluded, and expression variant faces from a
single sample per class. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(6):748–763.
Moghaddam, B. and Pentland, A. (1997). Probabilistic vi-
sual learning for object representation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
19(7):696–710.
Mozer, M. C. (1991). The perception of multiple objects:
a connectionist approach. MIT Press, Cambridge,
USA.
Rentzeperis, E., Stergiou, A., Pnevmatikakis, A., and Poly-
menakos, L. (2006). Impact of face registration errors
on recognition. In Artificial Intelligence Applications
and Innovations, Peania, Greece.
Rowley, H. A., Baluja, S., and Kanade, T. (1998). Rota-
tion invariant neural network-based face detection. In
Computer Vision and Pattern Recognition, pages 38–
44.
Shan, S., Chang, Y., Gao, W., Cao, B., and Yang, P. (2004).
Curse of mis-alignment in face recognition: problem
and a novel mis-alignment learning solution. In Auto-
matic Face and Gesture Recognition, pages 314–320.
Wiskott, L., Fellous, J., Krueger, N., and von der Malsburg,
C. (1997). Face recognition by elastic bunch graph
matching. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):775–779.
ROBUST FACE ALIGNMENT USING CONVOLUTIONAL NEURAL NETWORKS
37