USING LOW-LEVEL MOTION TO ESTIMATE GAIT PHASE

Ben Daubney, David Gibson, Neill Campbell

2008

Abstract

This paper presents a method that is capable of robustly estimating gait phase of a human walking using the motion of a sparse cloud of feature points extracted using a standard feature tracker. We first learn statistical motion models of the trajectories we would expect to observe for each of the main limbs. By comparing the motion of the tracked features to our models and integrating over all features we create a state probability matrix that represents the likelihood of being at a particular phase as a function of time. By using dynamic programming and allowing only likely phase transitions to occur between consecutive frames, an optimal solution can be found that estimates the gait phase for each frame. This work demonstrates that despite the sparsity and noise contained in the tracking data, the information encapsulated in the motion of these points is sufficient to extract gait phase to a high level of accuracy. Presented results demonstrate our system is robust to changes in height of the walker, gait frequency and individual gait characteristics.

References

  1. Argawal, A. and Triggs, B. (2004). Tracking articulated motion with piecewise learned dynamical models. In ECCV, pages 54-65.
  2. Caillette, F., Galata, A., and Howard, T. (2005). Real-Time 3-D Human Body Tracking using Variable Length Markov Models. In BMVC, pages 469-478.
  3. Coughlan, J., Yuille, A., English, C., and Snow, D. (2000). Efficient deformable template detection and localization without user initialization. CVIU, 78(3):303-319.
  4. Deutscher, J., Blake, A., and Reid, I. D. (2000). Articulated body motion capture by annealed particle filtering. In CVPR, pages 126-133.
  5. Gibson, D., Campbell, N., and Thomas, B. (2003). Quadruped gait analysis using sparse motion information. In ICIP, pages 333-336.
  6. Havasi, L., Szlavik, Z., and Sziranyi, T. (2007). Detection of gait characteristics for scene registration in video surveillance system. IEEE Trasactions on Image Processing, 16(2):503-510.
  7. Hu, S. and Buxton, B. F. (2005). Using temporal coherence for gait pose estimation from a monocular camera view. In BMVC, pages 449-558.
  8. Lan, X. and Huttenlocher, D. P. (2004). A unified spatiotemporal articulated model for tracking. In CVPR, pages 722-729.
  9. Micilotta, A. S., Ong, E. J., and Bowden, R. (2006). RealTime Upper Body Detection and 3D Pose Estimation in Monoscopic Images. In ECCV, pages 139-150.
  10. Navaratnam, R., Thayananthan, A., Torr, P., and Cipolla, R. (2005). Hierarchical part-based human body pose estimation. In BMVC, pages 479-488.
  11. Schuldt, C., Laptev, I., and Caputo, B. (2004). Recognizing human actions: A local svm approach. In ICPR, pages 32-36.
  12. Shi, J. and Tomasi, C. (1994). Good features to track. In CVPR, pages 593 - 600.
  13. Sidenbladh, H., Black, M. J., and Fleet, D. J. (2000). Stochastic Tracking of 3D Human Figures Using 2D Image Motion. In ECCV, pages 702-718.
  14. Song, Y., Goncalves, L., and Perona, P. (2001). Learning probabilistic structure for human motion detection. In CVPR, pages 771-777.
  15. Urtasun, R., Fleet, D. J., Hertzmann, A., and Fua, P. (2005). Priors for people tracking from small training sets. In ICCV, pages 403-410.
Download


Paper Citation


in Harvard Style

Daubney B., Gibson D. and Campbell N. (2008). USING LOW-LEVEL MOTION TO ESTIMATE GAIT PHASE . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 496-501. DOI: 10.5220/0001073604960501


in Bibtex Style

@conference{visapp08,
author={Ben Daubney and David Gibson and Neill Campbell},
title={USING LOW-LEVEL MOTION TO ESTIMATE GAIT PHASE},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={496-501},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001073604960501},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - USING LOW-LEVEL MOTION TO ESTIMATE GAIT PHASE
SN - 978-989-8111-21-0
AU - Daubney B.
AU - Gibson D.
AU - Campbell N.
PY - 2008
SP - 496
EP - 501
DO - 10.5220/0001073604960501