(a) (b)
(c) (d)
Figure 8: (a) Un dimanche apr
`
es-midi
`
a l’
ˆ
ıle de la grande jatte, 1884 (b) Result after applying anisotropic diffusion (c) Street
scene in Florence (d) Somewhere in Ireland.
The capability of our approach was demonstrated on
a variety of greyscale and color images. By our ap-
proach we hope to have closed a gap between classic
diffusion filters and regularization methods. Future
examinations will include verifying the rotation in-
variance properties of the local support area proposed
in section 3.2. Future work also will address the effect
of histogram shrinkage mentioned above and the im-
provement of the comparability of the noise removal
results.
REFERENCES
Aubert, G., Barlaud, M., Blanc-Feraud, L., and Charbon-
nier, P. (1997). Deterministic edge-preserving regu-
larization in computed imaging. IEEE Trans. Imag.
Process. 5(12).
Brockers, R., Hund, M., and Mertsching, B. (2005). Stereo
Matching with Occlusion Detection Using Cost Re-
laxation. In IEEE International Conference on Image
Processing (ICIP 2005), volume III, pages 389 – 392.
Guerrero-Colon, J. A. and Portilla, J. (2005). Two-level
adaptive denoising using gaussian scale mixtures in
overcomplete oriented pyramids. IEEE International
Conference on Image Processing (ICIP 2005), vol. I,
105-108.
Hund, M. (2002). Disparit
¨
atsbestimmung aus Stereobildern
auf der Basis von Kostenfunktionen. Diploma thesis,
University of Paderborn.
Ito, K. and Kunisch, K. (1999). An active set strategy based
on the augmented lagrangian formulation for image
restoration. M2AN Math. Model. Numer. Anal., Vol.
33, pp. 1-21.
J
¨
ahne, B. (2002). Digital image processing (5th ed.):
concepts, algorithms, and scientific applications.
Springer-Verlag.
Mahamud, S., Williams, L. R., Thornber, K. K., and Xu,
K. (2003). Segmentation of multiple salient closed
contours from real images. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 25(4).
Nordstrom, K. N. (1989). Biased anisotropic diffusion–a
unified regularization and diffusion approach to edge
detection. Technical Report UCB/CSD-89-514, EECS
Department, University of California, Berkeley.
Perona, P. and Malik, J. (1990). Scale-space and edge detec-
tion using anisotropic diffusion. IEEE Trans. Pattern
Anal. Mach. Intell., 12(7):629–639.
Portilla, J., Strela, V., Wainwright, M., and Simoncelli, E.
(2003). Image denoising using scale mixtures of gaus-
sians in the wavelet domain. IEEE Trans. Image Proc.,
In Press. 2003.
Scharr, H. and Weickert, J. (2000). An anisotropic diffu-
sion algorithm with optimized rotation invariance. In
G. Sommer, N. Kr uger, C. Perwass (Eds.), Muster-
erkennung.
Weickert, J. (1996). Anisotropic diffusion in image process-
ing. Ph.D. thesis, Dept. of Mathematics, University of
Kaiserslautern, Germany.
Weickert, J. (1999). Coherence-enhancing diffusion of
colour images. Image Vision Comput., 17(3-4):201–
212.
ANISOTROPIC DIFFUSION BY QUADRATIC REGULARIZATION
107