HIGH PERFORMANCE POSE INVARIANT FACE RECOGNITION

Hasan Demirel, Gholamreza Anbarjafari

2008

Abstract

A novel pose invariant face recognition system based on grey level histogram matching is proposed. The proposed system in this paper uses grey level histograms as feature vectors for recognition of the different poses of faces. The process is performed by taking the cross correlation between the histogram of a test face and the histograms of the training faces in the database. The proposed system gives 98.80% recognition rate on the HP database of 15 face subjects. This rate is down to 92% in the case of conventional eigenfaces method.

References

  1. A. David and S. Panchanathan, Wavelet-histogram method for face recognition, Journal of Electronic Imaging, April 2000, Volume 9, Issue 2, pp. 217-225.
  2. M. Turk and A. Pentland, “Face Recognition Using Eigenfaces,” in Proc. Int. Conf. On Patt. Recog., 1991, pp. 586-591.
  3. N. Gourier, D. Hall, J. L. Crowley, “Estimating Face Orientation from Robust Detection of Salient Facial Features”, Proceedings of Pointing 2004, ICPR, International Workshop on Visual Observation of Deictic Gestures, Cambridge, UK.
  4. Q. Chen, K. Kotani, F. Lee, and T. Ohmi, Face Recognition using Region-Division VQ Histogram Method. Signal and Image Processing (SIP04).
  5. Relhumeur, P., Hespanha, J., and Kreigman, D.,“Eigenfaces vs. Fisherfaces: Recognition using Class Specific Linear Projection,” IEEE Transactions on Pattern Anal.vsis and Machine Intelligence, 19(7), 7 11-720, 1997.
  6. Tae-Woong Yoo, Il-Seok Oh, “A fast algorithm for tracking human faces based on chromatic histograms.”, Pattern Recognition Letters, vol. 20, 967-978, 1999.
  7. T. Kanade, “Computer Recognition of Human Faces,” Basel and Stuttgart: Birkhauser, 1977.
  8. T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 971-987, 2002.
  9. W.W. Bledsoe, “The Model Method in Facial Recognition”, Panoramic Research Inc., Palo Alto, Cal., and Rep. PRI: 15, CA, 1964.
Download


Paper Citation


in Harvard Style

Demirel H. and Anbarjafari G. (2008). HIGH PERFORMANCE POSE INVARIANT FACE RECOGNITION . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 282-285. DOI: 10.5220/0001078402820285


in Bibtex Style

@conference{visapp08,
author={Hasan Demirel and Gholamreza Anbarjafari},
title={HIGH PERFORMANCE POSE INVARIANT FACE RECOGNITION},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={282-285},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001078402820285},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - HIGH PERFORMANCE POSE INVARIANT FACE RECOGNITION
SN - 978-989-8111-21-0
AU - Demirel H.
AU - Anbarjafari G.
PY - 2008
SP - 282
EP - 285
DO - 10.5220/0001078402820285