MULTIRESOLUTION MESH SEGMENTATION OF MRI BRAIN USING CLASSIFICATION AND DISCRETE CURVATURE

Sami Bourouis, Kamel Hamrouni, Mounir Dhibi

2008

Abstract

This paper presents a method for brain tissue segmentation and characterization of magnetic resonance imaging (MRI) scans. It is based on statistical classification, differential geometry, and multiresolution representation. The Expectation Maximization algorithm and k-means clustering are applied to generate an initial mask of tissue classes of data volume. Then, a hierarchical multiresolution representation is applied to simplify processing. The idea is that the low-resolution description is used to determine constraints for the segmentation at the higher resolutions. Our contribution is the design of a pipeline procedure for brain characterization/labeling by using discrete curvature and multiresolution representation. We have tested our method on several MRI data.

References

  1. Dempster, A., Laird, N. M., and Rubin, D. (1977). Maximum likelihood from in complete data via the em algorithm. Journal of the Royal Statistical Society, 1:1- 38.
  2. Hamman, B. (1993). Curvature approximation for triangulated surfaces. In: Gerald Farin et al., editors, Geometric Modelling, Computing Supplementum, Springer-Verlag, Vienna, Austria, pages 139- 153.
  3. Hoppe, H. (1996). Progressive meshes. SIGGRAPH 7896 Proc, pages 99-108.
  4. Jaume, S., Macq, B., and Warfield, S. (2002). Labeling the brain surface using a deformable multiresolution mesh. MICCAI, pages 451-458.
  5. Lorensen, W. and Cline, H. (1987). Marching cubes: A high-resolution 3-d surface construction algorithm. ACM Comput. Graph, 21:163-170.
  6. Mangan, A. and Whitaker, R. (1999). Partitioning 3d surface meshes using watershed segmentation. IEEE Transactions on Visualization and Computer Graphics, 5.
  7. Max, N. (1999). Weights for computing vertex normals from facet normals. Journal of Graphics Tools, 4(2):1-6.
  8. Meyer, M., Desbrun, M., and Schroder, P. (2002). Discrete differential-geometry operators for triangulated 2-manifolds. International Workshop on Visualization and Mathematics, Berlin, Germany,.
  9. Ronfard, R. and Rossignac, J. (1996). Full-range approximation of triangulated polyhedra. Computer Graphics Forum, Proc. Eurographics 7896, 15:1-38.
  10. Rossignac, J. and Borrel, P. (1993). Multi-resolution 3d approximations for rendering complex scenes. In Falcidieno, B. and Kunii, T., editors, Theoretical Aspects of Computer Software, Modeling in Computer Graphics: Methods and Applications, pages 455-465.
  11. Schroeder, W., Zarge, J., and Lorensen, W. (July 1992). Decimation of triangle meshes. Computer Graphics (SIGGRAPH 7892 Proc.), 26:65-70.
  12. Whitaker, R. (2000). Reducing aliasing artifacts in isosurfaces of binary volumes. IEEE Volume Visualization and Graphics Symposium, 21:23-32.
  13. Figure 8: Segmentation of cortical surface at different resolutions according to table 1.
Download


Paper Citation


in Harvard Style

Bourouis S., Hamrouni K. and Dhibi M. (2008). MULTIRESOLUTION MESH SEGMENTATION OF MRI BRAIN USING CLASSIFICATION AND DISCRETE CURVATURE . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 421-426. DOI: 10.5220/0001078704210426


in Bibtex Style

@conference{visapp08,
author={Sami Bourouis and Kamel Hamrouni and Mounir Dhibi},
title={MULTIRESOLUTION MESH SEGMENTATION OF MRI BRAIN USING CLASSIFICATION AND DISCRETE CURVATURE},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={421-426},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001078704210426},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - MULTIRESOLUTION MESH SEGMENTATION OF MRI BRAIN USING CLASSIFICATION AND DISCRETE CURVATURE
SN - 978-989-8111-21-0
AU - Bourouis S.
AU - Hamrouni K.
AU - Dhibi M.
PY - 2008
SP - 421
EP - 426
DO - 10.5220/0001078704210426