discontinuousness such as “Tsukuba” and “Teddy”
and gain approximate results of graph cuts method.
There are some other aspects which can be
improved. For example, occlusion problem should
be considered, and this problem has exposed in
“Tsukuba” and “Teddy”.
Although it is more difficult for the PDEs
method to preserves boundaries than some discrete
energy methods such as graph cuts method, PDEs
methods have its advantage on keep continuousness.
If we can find some witty strategies to preserve
necessary discontinuousness, PDEs method still can
become a useful solution in disparity map
reconstruction.
REFERENCES
Alvarez, L., Deriche, R., Sanchez, J., Weickert, J., 2000.
Dense disparity map estimation respecting image
discontinuities: a PDE and scale-space based approach.
In Technical Report RR-3874, INRIA.
Alvarez, L., Weickert, J., Sanchez, J., 1999. A scale-space
approach to nonlocal optical flow calculations. In
Scale-Space Theories in Computer Vision, pages 235-
246.
Aubert, G., Barlaud, M., Faugeras, O. and Jehan-Besson,
S., 2002. Image segmentation using active contours:
Calculus of variations or shape gradients? In Research
Report, INRIA.
Aubert, G., Vese, L., 1997. A variational method in image
recovery. In SIAM Journal of Numerical Analysis,
volume 34, pages 1948–1979.
Birchfield, S., Tomasi, C., 1999. Multiway cut for stereo
and motion with slanted surfaces, Proceeding of
International Conference Computer Vision, pages 489-
495.
Boykov, Y., Veksler, O., Zabih R., 2001. Fast approximate
Energy Minimization via Graph Cuts. In Proceeding
IEEE Transaction Pattern Analysis and Machine
Intelligence, volume 23
, pages 1222-1239.
Chan, T. F., Vese, L.A., 2001. Active contours without
edges. In IEEE Transaction on Image Processing,
volume 10, pages 366-277.
Deriche, R., Bouvin, S., Faugeras, O., 1997. A level-set
approach for stereo. In Proceeding SPIE, Investigative
Image Processing, volume 2092, pages 150-161.
Faugeras, O., Keriven, R., 1998. Complete Dense Stereo
vision Using Level Set Methods. In Proceeding
European Conference on Computer Vision, pages 379-
394.
Faugeras, O., Keriven, R., 2002. Variational Principles,
Surface Evolution, PDE's, Level Set Methods and the
Stereo Problem. In IEEE Transaction on Image
Processing, volume
7, pages 336-344.
Felzenszwalb, P. F., Huttenlokcher, D. P., 2004. Efficient
Belief Propagation for Early Vision. In Proceeding
International Journal of Computer Vision, volume 1,
pages 261-268.
Frey B. J., Koetter R., Petrovic N., 2002. Very loopy belief
propagation for unwrapping phase images. In MIT
Press, volume 14.
Kass, M., Witkin, A., Terzopoulos D., 1988. Snakes:
active contour models. In International Journal of
Computer Visiosn, volume 1, pages 321–331.
Kim, J.C., Lee, K.M., Choi, B.T., Lee, S.U., 2005. A dense
stereo matching using two-pass dynamic programming
with generalized ground control points. Proceeding
Computer Vision and Pattern Recognition, pages
1075-1082
Kim, J., Kolmogorov, V., Zabih, R., 2003. Visual
correspondence using energy minimization and mutual
information. In Proceeding International Conference
Computer Vision, pages 1033-1040.
Klaus, A., Sormann, M., Karner, K, 2006. Segment-based
stereo matching using belief propagation and a self-
adapting dissimilarity measure, In International
Conference of Pattern and Recognition, volume 3,
pages 15-18.
Kolmogorov, V., Zabih, R., 2004. What energy functions
can be minimized via graph cuts? In IEEE Trans.
Pattern Analysis and Machine Intelligence, volume 28,
pages 147-159.
Marshall, F. T., William, T. F., 2003. Comparison of
Graph Cuts with Belief Propagation for Stereo, using
Identical MRF Parameters. In Proceedings of the Ninth
IEEE International Conference on Computer Vision,
volume 2, pages 900-906.
Maso, G. D., Morel, J. M., Solimini, S., 1992. A
variational method in image segmentation: existence
and approximation results, In Acta Matematica,
volume 168, pages 89–151.
Osher, S., Sethian, J.A., 1988. Fronts propagating with
curvature dependent. In Journal of Computational
Physics, volume 79, pages 12-49.
Robert, L., Deriche, R., 1996. Dense disparity map
reconstruction: A minimization and regularization
approach which preserves discontinuities. In
Proceeding European Conference on Computer Vision,
pages 439-451.
Roy, S., Cox, I., 1998. A maximum-flow formulation of
the n-camera stereo correspondence problem. In
Proceeding international Conference of Computer
Vision, pages 492-498.
Scharstein, D., Szeliski, R., 2002. A taxonomy and
evaluation of dense two-frame stereo orrespond- dence
algorithms, In International Journal of Computer
Vision, volume 47, pages 7-42.
Sun, J., Zheng, N.N., Shum, H.Y., 2003. Stereo Matching
Using Belief Propagation. In IEEE Trans. Pattern
Analysis and Machine Intelligence, volume 25, pages
787-800.
VISAPP 2008 - International Conference on Computer Vision Theory and Applications
660