Jogan, M. and Leonardis, A. (2003). Robust localization
using an omnidirectional appearance-based subspace
model of environment. Robotics and Autonomous Sys-
tems, 45:57–72.
Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. (2003).
Rotation invariant Spherical Harmonic representation
of 3D shape descriptors. In Kobbelt, L., Schr
¨
oder, P.,
and Hoppe, H., editors, Eurographics Symp. on Ge-
ometry Proc.
Kovacs, J. A. and Wriggers, W. (2002). Fast rota-
tional matching. Acta Crystallographica Section D,
58(8):1282–1286.
Kr
¨
ose, B., Vlassis, N., Bunschoten, R., and Motomura,
Y. (2001). A probabilistic model for appearance-
based robot localization. Image and Vision Comput-
ing, 19(6):381–391.
Labbani-Igbida, O., Charron, C., and Mouaddib, E. M.
(2006). Extraction of Haar integral features on om-
nidirectional images: Application to local and global
localization. In DAGM 06, pages 334–343.
Levin, A. and Szeliski, R. (2004). Visual odometry and map
correlation. In CVPR, volume I, pages 611–618.
Makadia, A. (2006). Correspondenceless visual naviga-
tion under constrained motion. In Daniilidis, K. and
Klette, R., editors, Imaging beyond the Pinhole Cam-
era, pages 253–268.
Makadia, A. and Daniilidis, K. (2003). Direct 3D-rotation
estimation from spherical images via a generalized
shift theorem. In CVPR, volume 2, pages 217–224.
Makadia, A. and Daniilidis, K. (2006). Rotation recov-
ery from spherical images without correspondences.
PAMI, 28(7):1170–1175.
Makadia, A., Sorgi, L., and Daniilidis, K. (2004). Rotation
estimation from spherical images. In ICPR, volume 3.
Mei, C. (2006). Omnidirectional calibration toolbox. http:
//www.robots.ox.ac.uk/
˜
cmei/Toolbox.html.
Menegatti, E., Maeda, T., and Ishiguro, H. (2004). Image-
based memory for robot navigation using properties
of the omnidirectional images. Robotics and Au-
tonomous Systems, 47(4).
Menegatti, E., Zoccarato, M., Pagello, E., and Ishiguro, H.
(2003). Hierarchical image-based localisation for mo-
bile robots with Monte-Carlo localisation. In Proc.
European Conference on Mobile Robots, pages 13–
20.
Mester, R., Aach, T., and D
¨
umbgen, L. (2001).
Illumination-invariant change detection using a sta-
tistical colinearity criterion. In Pattern Recognition,
number 2191 in LNCS.
Mileva, Y., Bruhn, A., and Weickert, J. (2007).
Illumination-robust variational optical flow with pho-
tometric invariants. In Hamprecht, F., Schn
¨
orr, C., and
J
¨
ahne, B., editors, Pattern Recognition, volume 4713
of LNCS, pages 152–162. Springer.
M
¨
uhlich, M. and Mester, R. (2004). A statistical unification
of image interpolation, error concealment, and source-
adapted filter design. In Proc. SSIAI, pages 128–132.
IEEE Computer Society.
Pajdla, T. and Hlavac, V. (1999). Zero phase representa-
tion of panoramic images for image based localiza-
tion. In Computer Analysis of Images and Patterns,
pages 550–557.
Reisert, M. and Burkhardt, H. (2006). Invariant features for
3D-data based on group integration using directional
information and Spherical Harmonic expansion. In
Proc. ICPR 2006, LNCS.
Schulz, J., Schmidt, T., Ronneberger, O., Burkhardt, H.,
Pasternak, T., Dovzhenko, A., and Palme, K. (2006).
Fast scalar and vectorial grayscale based invariant fea-
tures for 3D cell nuclei localization and classification.
In Franke, K. and al., E., editors, DAGM 2006, num-
ber 4174 in LNCS, pages 182–191. Springer.
Steinbauer, G. and Bischof, H. (2005). Illumination
insensitive robot self-localization using panoramic
eigenspaces. In RoboCup 2004.
The Blender Foundation (2007). Blender. http://www.
blender.org.
Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic
Robotics. The MIT Press.
Turk, M. and Pentland, A. (1991). Eigenfaces for recogni-
tion. J. of Cognitive Neuroscience, 3(1).
Weisstein, E. W. (2007). Legendre polynomial. A Wol-
fram Web Resource. http://mathworld.wolfram.
com/LegendrePolynomial.html.
VISAPP 2008 - International Conference on Computer Vision Theory and Applications
550