AN AUTOMATED VISUAL EVENT DETECTION SYSTEM FOR CABLED OBSERVATORY VIDEO

Danelle E. Cline, Duane R. Edgington, Jérôme Mariette

2008

Abstract

This paper presents an overview of a system for processing video streams from underwater cabled observatory systems based on the Automated Visual Event Detection (AVED) software. This system identifies potentially interesting visual events using a neuromorphic vision algorithm and tracks events frame-by-frame. The events can later be previewed or edited in a graphical user interface for false detections, and subsequently imported into a database, or used in an object classification system.

References

  1. Condor High Throughput Computing, The University of Wisconsin, Madison, viewed 10 August, 2007, <http://www.cs.wisc.edu/condor/ >.
  2. Edgington, D.R., Cline, D.E., Davis, D., Kerkez, I., and Mariette, J. 2006, 'Detecting, Tracking and Classifying Animals in Underwater Video', in MTS/IEEE Oceans 2006 Conference Proceedings, Boston, MA, September, IEEE Press.
  3. Howe, N. & A. Deschamps, 2004, 'Better Foreground Segmentation Through Graph Cuts', technical report, viewed 18 September, 2007, <http://arxiv.org/abs/cs.CV/0401017>.
  4. iLab Neuromorphic Vision C++ Toolkit at the University of Southern California, viewed 18 September, 2007, <http://ilab.usc.edu/toolkit/>.
  5. Itti, L., C. Koch, and E. Niebur, 1998. 'A model of saliency-based event visual attention for rapid scene analyses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(22): p 1254-1259.
  6. Otsu, N. 1979, 'A Threshold Selection Method from Gray-Level Histograms', IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, pp. 62- 66.
  7. Video Annotation and Reference System (VARS), viewed 12 November, 2007, <http://www.mbari.org/vars/>.
  8. Walther, D., D.R. Edgington, K A. Salamy, M. Risi, R.E. Sherlock, and Christof Koch, 2003, 'Automated Video Analysis for Oceanographic Research', IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), demonstration, Madison, WI.
  9. Walther, D, D.R. Edgington, C. Koch, Detection and Tracking of Objects in Underwater Video, 2004, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Washington, D.C.
  10. Widder, E.A., B.H.Robison, K.R.Reisenbichler, S.H.D.Haddock, 2005, 'Using red light for in situ observations of deep-sea fishes', Deep-Sea Research, I 52:2077-2085.
Download


Paper Citation


in Harvard Style

E. Cline D., R. Edgington D. and Mariette J. (2008). AN AUTOMATED VISUAL EVENT DETECTION SYSTEM FOR CABLED OBSERVATORY VIDEO . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 196-199. DOI: 10.5220/0001086801960199


in Bibtex Style

@conference{visapp08,
author={Danelle E. Cline and Duane R. Edgington and Jérôme Mariette},
title={AN AUTOMATED VISUAL EVENT DETECTION SYSTEM FOR CABLED OBSERVATORY VIDEO},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={196-199},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001086801960199},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - AN AUTOMATED VISUAL EVENT DETECTION SYSTEM FOR CABLED OBSERVATORY VIDEO
SN - 978-989-8111-21-0
AU - E. Cline D.
AU - R. Edgington D.
AU - Mariette J.
PY - 2008
SP - 196
EP - 199
DO - 10.5220/0001086801960199