0.90
0.92
0.94
0.96
0.98
1.00
1 2 3 4 5 6 7 8 9 10
Nose Region
Elliptical Nose Region
Circular Nose Region
Eyes Region
Face
Combination
(a) CMC curves for probe 1
0.90
0.92
0.94
0.96
0.98
1.00
1 2 3 4 5 6 7 8 9 10
Nose Region
Elliptical Nose Region
Circular Nose Region
Eyes Region
Face
Combination
(b) CMC curves for probe 2
Figure 8: Cumulative Match Characteristic curves for each
region and their combination: (a) for probe set 1; (b) for
probe set 2.
REFERENCES
Bellon, O. R. P., Silva, L., Queirolo, C., Drovetto, S., and
Pamplona, M. (2006). 3d face image registration for
face matching guided by the surface interpenetration
measure. In ICIP, pages 2661–2664. IEEE.
Bellon, O. R. P., Silva, L., and Queirolo, C. C. (2005). 3D
face matching using the surface interpenetration mea-
sure. In Lecture Notes in Computer Science, volume
3617, pages 1051–1058. Springer-Verlag.
Besl, P. J. and McKay, N. D. (1992). A method for registra-
tion of 3-D shapes. IEEE Trans. Pattern Analysis and
Machine Intelligence, 14(2):239–256.
Chang, K. I., Bowyer, K. W., and Flynn, P. J. (2005). Adap-
tive rigid multi-region selection for handling expres-
sion variation in 3D face recognition. In Proc. of IEEE
Conf. CVPR, volume 3, pages 157–164.
Chang, K. I., Bowyer, K. W., and Flynn, P. J. (2006). Multi-
ple nose region matching for 3d face recognition under
varying facial expression. IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, 28(10):1695–1700.
Chen, Y. and Medioni, G. (1992). Object modelling by reg-
istration of multiple range images. Image Vision Com-
puting, 10(3):145–155.
Gelfand, N., Ikemoto, L., Rusinkiewicz, S., and Levoy, M.
(2003). Geometrically stable sampling for the ICP
algorithm. In Proc. of 4th Intl. Conf. on 3D Digital
Imaging and Modeling, pages 260–267.
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983).
Optimization by simulated annealing. Science,
220(4598):671–680.
Kittler, J., Hatef, M., Duin, R. P. W., and Matas, J. (1998).
On combining classifiers. IEEE Trans. Pattern Analy-
sis and Machine Intelligence, 20(3):226–239.
Lu, X. and Jain, A. K. (2005). Integrating range and texture
information for 3d face recognition. In Proc. of 7th
IEEE Workshop on Applications of Computer Vision,
pages 156–163.
Lu, X., Jain, A. K., and Colbry, D. (2006). Matching 2.5D
face scans to 3D models. IEEE Trans. Pattern Analy-
sis and Machine Intelligence, 28(1):31–43.
Lundy, M. and Mees, A. (1986). Convergence of an anneal-
ing algorithm. Mathematical Programming: Series A
and B, 34(1):111–124.
Phillips, P. J., Flynn, P. J., Scruggs, W. T., Bowyer, K. W.,
Chang, J., Hoffman, K., Marques, J., Min, J., and
Worek, W. J. (2005). Overview of the face recogni-
tion grand challenge. In Proc. of IEEE CVPR, pages
947–954.
Rayward-Smith, V. J., Osman, I. H., Reeves, C. R., and
Smith, G. D. (1996). Modern Heuristic Search Meth-
ods. John Wiley & Sons Ltd.
Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants
of the ICP algorithm. In Proc. of 3rd Intl. Conf. on 3D
Digital Imaging and Modeling, pages 145–152.
Segundo, M. P., Queirolo, C. C., Bellon, O. R. P., and Silva,
L. (2007). Automatic 3d facial segmentation and land-
mark detection. XIV Intl. Conf. on Image Analysis and
Processing, pages 431–436.
Silva, L., Bellon, O. R. P., and Boyer, K. L. (2005a). Pre-
cision range image registration using a robust surface
interpenetration measure and enhanced genetic algo-
rithms. IEEE Trans. Pattern Analysis and Machine
Intelligence, 27:762–776.
Silva, L., Bellon, O. R. P., and Boyer, K. L. (2005b). Ro-
bust Range Image Registration Using Genetic Algo-
rithms and the Surface Interpenetration Measure, vol-
ume 60 of Machine Perception and Artificial Intelli-
gence. World Scientific Publishing.
Torr, P. H. S. and Zisserman, A. (2000). MLESAC: A new
robust estimator with application to estimating image
geometry. CVIU, 78:138–156.
VISAPP 2008 - International Conference on Computer Vision Theory and Applications
74