COMPLETE AND STABLE PROJECTIVE HARMONIC INVARIANTS FOR PLANAR CONTOURS RECOGNITION

Faten Chaieb, Faouzi Ghorbel

2008

Abstract

Planar shapes recognition is an important problem in computer vision and pattern recognition. We deal with planar shape contour views that differ by a general projective transformation. One method for solving such problem is to use projective invariants. In this work, we propose a projective and parameterization invariant generation framework based on the harmonic analysis theory. In fact, invariance to reparameterization is obtained by a projective arc length curve reparameterization process. Then, a complete and stable set of projective harmonic invariants is constructed from the Fourier coefficients computed on the reparameterized contours. We experiment this set of descriptors on analytic contours in order to recognize projectively similar ones.

References

  1. Arbter, K., Snyder, W., Burkhardt, H., and Hirzinger, G. (1990). Application of affine-invariant fourier descriptors to recognition of 3-d objects. IEEE trans. on Pattern Analysis and Machine Intelligence, 12(7):640- 647.
  2. Brill, M. H., Barrett, E. B., and Payton, P. M. (1992). Projective invariants for curves in two and three dimensions. In press, M., editor, Geometric Invariance in Computer Vision, pages 193-214.
  3. Cartan, E. (1937). La thorie des groupes finis et continus et la gomtrie diffrentielle traite par la mthode du repre mobile. Jacques Gabay, 1992.
  4. Crimmins, T. (1982). A complete set of fourier descriptors for two-dimensional shapes. SMC, 12:848-855.
  5. Gaffney, P. W. and Powell, M. J. D. (1976). Numerical Analysis, volume 506 of Lecture Notes in Mathematics, chapter Optimal Interpolation, pages 90-99.
  6. Kunttu, I., Lepisto, L., Rauhamaa, J., and Visa, A. (2004). Multiscale fourier descriptor for shape-based image retrieval. Pattern Recognition, 2:765 - 768.
  7. Kuthirummal, S., Jawahar, C., and Narayanan, P. (2004). Fourier domain representation of planar curves for recognitionin multiple views. Pattern Recognition, 37(4):739-754.
  8. Manay, S., Cremers, D., Byung-WooHong, Jr., A. J. Y., and Soatto, S. (2006). Integral invariants for shape matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1602-1618.
  9. Mundy, J. L. and Zisserman, A., editors (1992). Geometric invariance in computer vision. MIT Press.
  10. Van Gool, L. J., Moons, T., Pauwels, E., and Oosterlinck, A. (1992). Semi-differential invariants. In press, M., editor, Geometric Invariance in Computer Vision, pages 157-192.
  11. Weiss, I. (1992). Noise resistant invariants curves. In Geometric Invariance in Computer Vision, pages 1135- 1156. MIT Press.
Download


Paper Citation


in Harvard Style

Chaieb F. and Ghorbel F. (2008). COMPLETE AND STABLE PROJECTIVE HARMONIC INVARIANTS FOR PLANAR CONTOURS RECOGNITION . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 111-116. DOI: 10.5220/0001088301110116


in Bibtex Style

@conference{visapp08,
author={Faten Chaieb and Faouzi Ghorbel},
title={COMPLETE AND STABLE PROJECTIVE HARMONIC INVARIANTS FOR PLANAR CONTOURS RECOGNITION},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={111-116},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001088301110116},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - COMPLETE AND STABLE PROJECTIVE HARMONIC INVARIANTS FOR PLANAR CONTOURS RECOGNITION
SN - 978-989-8111-21-0
AU - Chaieb F.
AU - Ghorbel F.
PY - 2008
SP - 111
EP - 116
DO - 10.5220/0001088301110116