Table 1: Evaluation Core Point Detection for FVC2004.
ACP ACP FCP FCP
Approaches (Numbers) (%) (Numbers) (%)
Poincare
Index 191 59.68 129 40.32
Detection
of Curvature 263 82.18 57 17.82
Optimal
Core Point 293 91.56 27 8.44
Table 2: Performance Evaluation of Core Point Detection
for Different Quality Images.
Fingerprint Poincare Detection Optimal
Image Index of Curvature Core Point
Quality (%) (%) (%)
Good
Quality 90.3 94.8 98.7
Low
Quality 50.1 63.4 82.3
Rotated
Images 57.8 71.2 87.1
Table 3: Error Performance Evaluation.
Max Min Mean Std
Techniques Error Error Error Deviation
Poincare
Index 240.98 0 25.51 37.75
Detection
of Curvature 240.98 0 22.73 36.01
Optimal
Core Point 240.98 0 14.75 34.39
Table 4: Evaluation of Computational Time.
Processing Time
Techniques Seconds
Poincare Index 0.45
Detection of Curvature 0.25
Optimal Core Point 0.18
Figure 5: 1st row: Oily fingerprint images, 2nd row: Dry
fingerprint images.
6 CONCLUSIONS
Our core point detection technique is useful as it de-
tects the optimal core point with low computation and
it requires simple field orientation. Optimal core point
is detected using the fine orientation field estimation.
The performance of the proposed technique is better
than the Poincare index and Detection of Curvature
technique. Moreover the proposed technique gives
better results even in case of oily and dry images.
REFERENCES
A. K. Jain, S. P. and Hong, L. (1999). A multichannel ap-
proach to fingerprint classification. In IEEE Transac-
tions on PAMI, Vol.21, No.4, pp. 348-359.
A.K Jain, H. L. and Boole, R. (1997). One-line finger-
print verification. In IEEE Trans. PAMI, Vol.19,No.4,
pp.302-314.
Ani1 K. Jain, Salil Prabhakar, L. H. and Pankanti, S.
(2000). Filterbank-based fingerprint matching. In
IEEE Transactions on Image Processing, Vol. 9, No
5, pp. 846-859.
Anil Jain, Ruud Bolle, S. P. (1998). Biometrics-personal
identification in networked society. In KluwerAca-
demic Publishers, pp 411.
D. Maltoni, D. Maio, A. K. J. and Prabhakar, S. (2003).
Handbook of fingerprint recognition. In Springer-
Verlag.
FVC (2004). Finger print verification contest 2004. In
Available at (http://bias.csr.unibo.it/fvc2004.html).
Kalle Karu, A. J. (1996). Fingerprint classification. In Pat-
tern Recognition, vol. 18, No.3, pp.389-404.
Kawagoe, M. and A.Tojo (1984). Fingerprint pattern classi-
fication. In Pattern Recognition, Vol.17, pp.295-303.
Lim and S.Jae (1990). Two-Dimensional Signal Image Pro-
cessing.
Maio, D. and Maltoni, D. (Jan 1997). Direct gray-scale
minutiae detection in fingerprints. In IEEE Trans. on
Pattern Analysis and Machine Inteligence, vol. 19, pp.
27-40.
Sen Wang, Wei Wei Zhang, Y. S. W. (2002). Fingerprint
classification by directional fields. In Proceedings of
the Fourth IEEE International Conference on Multi-
modal Interfaces (ICMI’02).
W. F. Leung, S. H. Leung, W. H. L. and Luk, A. (1991).
Fingerprint recognition using neural network. In Neu-
ral Networks For Signal Processing - Proceedings Of
The 1991 IEEE Workshop.
Wang, S. and Wang., Y. (2004). Fingerprint enhancement
in the singular point area. In IEEE signal processing
letters, vol. 11, no. 1, pp. 16-19.
Zhang, D. D. (2000). Automated biometrics technologies
and systems. In Kluwer Academic Publishers, pp.331.
Zhongchao Shi, Yangsheng Wang, J. Q. and Xu, K. (2004).
A new segmentation algorithm for low quality finger-
print image. In IEEE Proceedings of the Third Inter-
national Conference on Image and Graphics.
VISAPP 2008 - International Conference on Computer Vision Theory and Applications
356