Blake, A. and Isard, M. (1998). Active Contours. Springer,
Berlin Heidelberg New York.
Blake, A., North, B., and Isard, M. (1999). Learning multi-
class dynamics. Advances in Neural Information Pro-
cessing Systems, 11:389–395.
Bregler, C., Malik, J., and Pullen, K. (2004). Twist based
acquisition and tracking of animal and human kine-
matics. Int. J. Comput. Vision, 56(3):179–194.
Cuzol, A., Hellier, P., and Mmin, E. (2007). A low dimen-
sional fluid motion estimator. Int. Journ. on Computer
Vision.
Del Moral, P. (1997). Nonlinear filtering: interacting par-
ticle resolution. C. R. Acad. Sci. Paris S´er. I Math.,
325(6):653–658.
Doucet, A., de Freitas, N., and Gordon, N., editors
(2002). Sequential Monte Carlo Methods in Prac-
tice. Statistics for Engineering and Information Sci-
ence. Springer-Verlag, New York Berlin Heidelberg.
Faugeras, O., Luong, Q.-T., and Papadopoulou, T. (2001).
The Geometry of Multiple Images: The Laws That
Govern The Formation of Images of A Scene and Some
of Their Applications. MIT Press, Cambridge, MA,
USA.
Gavrila, D. M. (1999). The visual analysis of human move-
ment: A survey. Computer Vision and Image Under-
standing: CVIU, 73(1):82–98.
Gavrila, D. M. and Davis, L. S. (1995). Towards 3d model-
based tracking and recognition of human movement.
In Proc. of the IEEE International Workshop on Face
and Gesture Recognition, pages 272–277, Zurich,
Switzerland.
Gordon, N. (1993). Bayesian methods for tracking. PhD
thesis, University of London.
Kakadiaris, I. A. and Metaxas, D. (1996). Model-based es-
timation of 3D human motion with occlusion based
on active multi-viewpoint selection. In Proceedings
of the 1996 Conference on Computer Vision and Pat-
tern Recognition (CVPR ’96), page 81, Washington,
DC, USA.
Kalman, R. E. and Bucy, R. S. (1961). New results in linear
filtering and prediction theory. Trans. ASME Ser. D. J.
Basic Engrg., 83:95–108.
Malis, E. (April 2004). Improving vision-based control us-
ing efficient secondorder minimization techniques. In
ICRA’04, New Orleans.
Morency, L., Rahimi, A., and Darrell, T. (2003). Adaptive
view-based appearance models. In Proc. IEEE Conf.
on Comp. Vision and Pattern Recogn., pages 803–810.
Murray, R. M., Sastry, S. S., and Zexiang, L. (1994). A
Mathematical Introduction to Robotic Manipulation.
CRC Press, Inc., Boca Raton, FL, USA.
Perez, P., Hue, C., Vermaak, J., and Gangnet, M. (2002).
Color-based probabilistic tracking. In ECCV, number
2350 in LNCS, pages 661–675.
Rouchdy, Y., Pousin, J., Schaerer, J., and Clarysse, P.
(2007). A nonlinear elastic deformable template for
soft structure segmentation. Application to the heart
segmentation in MRI. Inverse Problems, 23:1017–
1035.
Sidenbladh, H. and Black, M. (2003). Learning the statistics
of people in images and video. Int. Journ. on Com-
puter Vision, 54(1-3):183–209.
Sidenbladh, H. and Black, M. J. (2002). Learning the statis-
tics of people in images and video. Int. Journal of
Computer Vision, 54.
Weiss, Y. and Adelson, E. H. (1996). A unified mixture
framework for motion segmentation: Incorporating
spatial coherence and estimating the number of mod-
els. In Proceedings of the 1996 Conference on Com-
puter Vision and Pattern Recognition (CVPR ’96),
page 321, Washington, DC, USA.
Wu, Y. and Huang, T. (2001). A co-inference approach to
robust visual tracking. In Proc. IEEE Conf. on Comp.
Vision, pages 26–33.
Zhang, X., Liu, Y., and Huang, T. S. (2006). Motion anal-
ysis of articulated objects from monocular images.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(4):625–636.
AN ARTICULATED MODEL WITH A KALMAN FILTER FOR REAL TIME VISUAL TRACKING - Application to the
Tracking of Pedestrians with a Monocular Camera
693