allows us to further constraint unknown blurs in par-
ticular. As can be seen from the experimental section
both multi-channel based restoration algorithms per-
formed better when logarithmic opinion pooling tech-
nique was used to statistically combine observation
models into the restoration process.
ACKNOWLEDGEMENTS
This work has been supported by the Comisi´on
Nacional de Ciencia y Tecnolog´ıa under contract
TIC2007-65533.
REFERENCES
Bishop, T., Babacan, D., Amizic, B., Katsaggelos, A. K.,
Chan, T., and Molina, R. (2007). Blind image de-
convolution: problem formulation and existing ap-
proaches. In Campisi, P. and Egiazarian, K., editors,
Blind image deconvolution: Theory and Applications,
chapter 1, pages 1–42. CRC.
Galatsanos, N. P., Mesarovic, V. Z., Molina, R., Katsagge-
los, A. K., and Mateos, J. (2002). Hyperparameter es-
timation in image restoration problems with partially-
known blurs. Optical Eng., 41(8):1845–1854.
Gastaud, M., Ladjal, S., and Matre, H. (2007). Blind fil-
ter identification and image superresolution using sub-
space methods. In European Signal Processing Con-
ference. Poznan (Poland).
Genest, C. and Zidek, J. V. (1986). Combining probability
distributions: A critique and an annotated bibliogra-
phy. Statistical Science, 1:114148.
Katsaggelos, A., Molina, R., and Mateos, J. (2007). Super
resolution of images and video. Synthesis Lectures
on Image, Video, and Multimedia Processing. Morgan
and Claypool.
Kullback, S. (1959). Information Theory and Statistics.
New York, Dover Publications.
Kullback, S. and Leibler, R. A. (1951). On information and
sufficiency. Annals of Mathematical Statistics, 22:79–
86.
Mateos, J., Katsaggelos, A., and Molina, R. (2000). A
Bayesian approach to estimate and transmit regu-
larization parameters for reducing blocking artifacts.
9(7):1200–1215.
Molina, R., Katsaggelos, A. K., and Mateos, J. (1999).
Bayesian and regularization methods for hyperparam-
eter estimation in image restoration. 8(2):231–246.
Molina, R., Mateos, J., and Katsaggelos, A. (2006). Blind
deconvolution using a variational approach to parame-
ter, image, and blur estimation. IEEE Trans. on Image
Processing, 15(12):3715–3727.
Ripley, B. D. (1981). Spatial Statistics, pages 88–90. John
Wiley.
Sroubek, F., Crist´obal, G., and Flusser, J. (2007). A unified
approach to superresolution and multichannel blind
deconvolution. IEEE Transactions on Image Process-
ing, 9:2322–2332.
VISAPP 2008 - International Conference on Computer Vision Theory and Applications
570