replace the raw data. Our major change starts at the
third step as follows: We mark those narrowly
passed peaks as likely false peaks. While those
points passing a specific cutoff filter are recorded as
peaks, other points passing half of the cutoff filter or
whose amplitudes being second to the corresponding
peaks nearby are also recorded as back-up candidate
peaks for next iteration. They are used to mutate
with the narrowly passed peaks to improve the
overall fitness function in the fourth step.
Figure 8: Nonlinear Regressions of Several Iterations.
After constructing the Voronoi diagram and
indexing each site with the mapped pixels, we add
three operations in the fourth step. Firstly, we
recalculate the median and standard variations of the
site sizes along with the amplitude of signals and
update the fitness function. Secondly, we construct a
hypothetic Gaussian distribution of the site sizes of
the Voronoi diagram. If the size of a peak lies out of
the small side of a certain confidence interval, then it
is confirmed as a most-likely false peak. If a
recorded back-up peak candidate is available in the
corresponding site of the most-likely false peak,
then, we test the mutation under the fitness function.
If the mutation improves the fitness, then the back-
up point is promoted as a peak by properly
increasing its signal amplitude without changing the
mean signal intensity, while the most likely false
peak is demoted as a back-up candidate by properly
decreasing its amplitude. Finally, we use an
empirical cutoff of the fitness function to decide if
the iteration should be terminated.
4.3 Conclusions
Voronoi diagram has extensive applications in many
fields (Gonzalez 2004). In the broad image
processing field, Amidror surveyed the applications
of Voronoi diagrams to data interpolations Amidror
2002. We observe that the mapping between the
peaks of charge clouds and scintillation sources of a
segmented crystal plate is essentially a nearest
neighborhood problem. In this work, we use a
Voronoi diagram to construct the position mapping.
To our knowledge, it is the first time that the
Voronoi diagram is applied to solve position
mapping problems in image processing field. The
natural fit of the Voronoi diagram to the essence of
neighborhood problem significantly improves the
likelihood of correct mapping and makes the
mapping technique adaptable to crystal plates in
other geometric configurations. This paper presents
our empirical solution to the image restoration
problem used for breast scintimammography. We
implement the computation of Voronoi diagrams in
C via OpenGL under a Java-based user environment
called Kmax. We also outline a nonlinear regression
method to correct the shape of charge clusters
locally and a preliminary adaptive algorithm to
improve the effectiveness of peak identification in
our future work.
ACKNOWLEDGEMENTS
Authors would like to give thanks to the Thomas
Jefferson National Accelerator Facility for
sponsoring the reported investigation.
REFERENCE
Amidror, I., 2002. Scattered data interpolation methods for
electronic imaging system: A survey, Journal of
Electronic Imaging , Vol. 11(2), 157-176.
Gonzalez, R., C., Woods, R., E., 2004. Digit Image
Processing, Pearson Education, , 2nd edition.
Weisenberger, A.G., Wojcik, R., et al. 2003. SPECT-CT
system for small animal imaging, Nuclear Science,
IEEE Transactions, Volume 50, Issue 1, pp. 74 – 79.
Marks, D.G., Barber, H.B., et al., 1999. Improving
Performance of a CdZnTe imaging array by mapping
the detector with gamma rays, Nuclear Inst. &
Methods in Phys. Res., A 428, 102 – 112.
O’ Rourke, J., 1998. Computational Geometry in C,
Cambridge University Press, second edition.
Smith, M.F, Majewki, S., Weisenberger, A.G., 2003.
Optimizing Pinhole and Parallel Hole Collimation for
Scintimammography with Compact Pixellated
Detectors, IEEE Trans Nucl Sci. 50: 321-326.
Williams, M. B., Goode, A.R., Galbis-Reig, V., et al.
2000. Performance of a PSPMT based detector for
scintmammorgraphy, Phy. Med. Biology, Vol. 45, pp
781-800.
VORONOI DIAGRAM AND ITS APPLICATION TO SPATIAL CALIBRATION FOR GAMMA CAMERA IMAGES
73