EVALUATION OF NEURAL PDF CONTROL STRATEGY APPLIED TO A NONLINEAR MODEL OF A PUMPED-STORAGE HYDROELECTRIC POWER STATION

G. A. Munoz-Hernandez, C. A. Gracios-Marin, A. Diaz-Sanchez, S. P. Mansoor, D. I. Jones

2008

Abstract

In this paper, a neural Pseudoderivative control (PDF) is applied to a nonlinear mathematical model of the Dinorwig pumped - storage hydroelectric power station. The response of the system with this auto-tuning controller is compared with that of a classic controller, currently implemented on the system. The results show how the application of PDF control to a hydroelectric pumped-storage station improves the dynamic response of the power plant, even when multivariable effects are taken into account.

References

  1. Aguado Behar, A. (2000). Topics on identification and adaptive control (in Spanish). La Habana, Cuba: ICIMAF.
  2. Djukanovic, M. B., Calovic, M. S., Vesovic, B. V., & Sobajic, D. J. (1997). Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system. IEEE Transactions on Energy Conversion , 12, 375-381.
  3. Garcez, J. N., & Garcez, A. R. (1995). A connectionist approach to hydroturbine speed control parameters tuning using artificial neural network. In IEEE (Ed.), 38th IEEE Midwest Symposium on Circuits and Systems, 2, pp. 641-644.
  4. Jones, D. I., Mansoor, S. P., Aris, F. C., Jones, G. R., Bradley, D. A., & King, D. J. (2004). A standard method for specifying the response of hydroelectric plant in frequency-control mode. Electric Power Systems Research , 68, 19-32.
  5. Kang, J. K., Lee, J. T., Kim, Y. M., Kwon, B. H., & Choi, K. S. (1991). Speed controller design for induction motor drivers using a PDF control and load disturbance observer. IECON (pp. 799-803). Kobe, Japan: IEEE.
  6. Kundur, P. (1994). Power System Stability and Control New York. New York, USA: Mc Graw Hil.
  7. Mansoor, S. P. (2000). PhD. Thesis. Behaviour and Operation of Pumped Storage Hydro Plants. Bangor, U.K.: University of Wales, Bangor.
  8. Mansoor, S. P., Jones, D. I., Bradley, D. A., & Aris, F. C. (1999). Stability of a pumped storage hydropower station connected to a power system. IEEE Power Eng. Soc. Winter Meeting (pp. 646-650). New York, USA: IEEE.
  9. Mansoor, S. P., Jones, D. I., Bradley, D. A., Aris, F. C., & Jones, G. R. (2000). Reproducing oscillatory behaviour of a hydroelectric power station by computer simulation. Control Engineering practice , 8, 1261-1272.
  10. Minsky, M. L., & Papert, S. A. (1988). Perceptrons: Introduction to Computational Geometry. Cambridge, USA: MIT Press.
  11. Narendra, K. S., & Mukhopadhyay, S. (1996). Adaptive control using neural networks and approximate models. American Control Conference (pp. 355-359). Seattle, USA: IEEE.
  12. Rumelhart, D. E., McClelland, J. L., & group, T. P. (1986). Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1). Cambridge, USA: MIT Press.
  13. Shu-Qing, W., Zhao-Hui, L., Zhi-Huai, X., & Zi-Peng, Z. (2005). Application of GA-FNN hybrid control system for hydroelectric generating units. International Conference on Machine Learning and Cybernetics. 2, págs. 840-845. IEEE.
  14. Werbos, P. J. (1974). PhD. Thesis: Beyond regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Cambridge, USA: Harvard University, Cambridge, MA.
  15. Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. IRE WESCON Convention Record, 4, págs. 96-104.
  16. Working group on prime mover energy supply, I. (1992). Hydraulic turbine and turbine control model for system dynamic studies. IEEE Transactions on Power Systems , 7, 167-179.
  17. Yin-Song, W., Guo-Cai, S., & Ong-Xiang. (2000). The PID-type fuzzy neural network control and it's application in the hydraulic turbine generators. Power Engineering Society meeting. 1, págs. 338-343. IEEE.
Download


Paper Citation


in Harvard Style

A. Munoz-Hernandez G., A. Gracios-Marin C., Diaz-Sanchez A., P. Mansoor S. and I. Jones D. (2008). EVALUATION OF NEURAL PDF CONTROL STRATEGY APPLIED TO A NONLINEAR MODEL OF A PUMPED-STORAGE HYDROELECTRIC POWER STATION . In Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8111-30-2, pages 259-265. DOI: 10.5220/0001475202590265


in Bibtex Style

@conference{icinco08,
author={G. A. Munoz-Hernandez and C. A. Gracios-Marin and A. Diaz-Sanchez and S. P. Mansoor and D. I. Jones},
title={EVALUATION OF NEURAL PDF CONTROL STRATEGY APPLIED TO A NONLINEAR MODEL OF A PUMPED-STORAGE HYDROELECTRIC POWER STATION},
booktitle={Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2008},
pages={259-265},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001475202590265},
isbn={978-989-8111-30-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - EVALUATION OF NEURAL PDF CONTROL STRATEGY APPLIED TO A NONLINEAR MODEL OF A PUMPED-STORAGE HYDROELECTRIC POWER STATION
SN - 978-989-8111-30-2
AU - A. Munoz-Hernandez G.
AU - A. Gracios-Marin C.
AU - Diaz-Sanchez A.
AU - P. Mansoor S.
AU - I. Jones D.
PY - 2008
SP - 259
EP - 265
DO - 10.5220/0001475202590265