DRIVER’S DROWSINESS DETECTION BASED ON VISUAL INFORMATION

Marco Javier Flores, José María Armingol, Arturo de la Escalera

2008

Abstract

In this paper, a new Driver Assistance System (DAS) for automatic driver’s drowsiness detection based on visual information and image processing is presented. This algorithm works on several stages using Viola and Jones (VJ) object detector, expectation maximization algorithm, the Condensation algorithm and support vector machine to compute a drowsiness index. The goal of the system is to help in the reduction of traffic accidents caused by human errors. Examples of different driver’s images taken over a real vehicle are shown to validate the algorithm.

References

  1. Viola P. and Jones M., 2001: Rapid Object Detection using a Boosted Cascade of Simple Features. Accepted Conference on Computer Vision and Pattern Recognition.
  2. Horng W., Chen C. and Chang Y., 2004: Driver Fatigue Detection Based on Eye Tracking and Dynamic Template Matching. Proceedings of the IEEE International Conference on Networking, Sensing & Control.
  3. Tian Z. and Qin. H., 2005: Real-time Driver's Eye State Detection. IEEE International Conference on Vehicular Electronics and Safety, Pg. 285-289.
  4. Ji Q. and Yang. X., 2002: Real-Time Eye, Gaze, and Face Pose Tracking for Monitoring Driver Vigilance. Real Time Imaging, Nr. 8, Pg. 357-377, Elsevier Science Ltd.
  5. Bergasa L., Nuevo J., Sotelo M. and Vazquez M., 2004: Real Time System for Monitoring Driver Vigilance. IEEE Intelligent Vehicles Symposium.
  6. Isard M. and Blake A., 1998: Condensation: conditional density propagation for visual tracking. International Journal on Computer Vision, 29(1), pp. 5-28.
  7. Cristianini N. and Shawe-Taylor J., 2000: An introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press.
  8. Chang C. and Lin C., 2001: LIBSVM: a library for support vector machine, URL: www.csie.ntu.edu.tw /cjlin/libsvm
  9. Otsu N., 1979: A threshold selection method from graylevel histograms. IEEE Trans. Systems, Man and Cybernetics, Vol. 9, pp. 62-66.
  10. Gejgus P. and Sparka M., 2003: Face Tracking in Color Video Sequences. The Association for Computing Machinery Inc.
  11. Brandt T., Stemmer R., Mertsching B., and Rakotomirainy A., 2004: Affordable Visual Driver Monitoring System for Fatigue and Monotony. IEEE International Conference on Systems, Man and Cybernetics. Vol. 7, pp. 6451-6456.
  12. Fletcher L., Petersson L. and Zelinsky A., 2003: Driver Assistance Systems based on Vision In and Out of Vehicles. IEEE Proceedings of Intelligent Vehicles Symposium, pp. 322-327.
  13. Wu Y., Liu H. and Zha H., 2004: A New Method of Detecting Human Eyelids Based on Deformable Templates. IEEE International Conference on Systems, Man and Cybernetics, pp. 604-609.
  14. Jafar I., Ying H., 2007: A new method for Image Contrast Enhancement Based on Automatic Specification of Local Histograms. IJCSNS International Journal of Computer Science and Network Security, Vol.7 No.7, July.
  15. Dong W. Wu X., 2005: Driver Fatigue Detection Based on the Distance of Eyelid. IEEE Int. Workshop VLSI Design & Video Tech. Suzhou-China.
  16. Gunn S. R. and Nixon M. S., 1994: A Dual Active Contour for Head Boundary Extraction. IEEE Colloquium on Image Processing for Biometric Measurement, pp. 6/1 - 6/4, London.
  17. Dokladal P., Enficiaud R. and Dejnozkova E., 2004: Contour-Based Object Tracking with Gradient-Based Contour Attraction Field. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'04), vol. 3, pp. iii-17-20.
Download


Paper Citation


in Harvard Style

Javier Flores M., María Armingol J. and de la Escalera A. (2008). DRIVER’S DROWSINESS DETECTION BASED ON VISUAL INFORMATION . In Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO, ISBN 978-989-8111-31-9, pages 30-35. DOI: 10.5220/0001479400300035


in Bibtex Style

@conference{icinco08,
author={Marco Javier Flores and José María Armingol and Arturo de la Escalera},
title={DRIVER’S DROWSINESS DETECTION BASED ON VISUAL INFORMATION},
booktitle={Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,},
year={2008},
pages={30-35},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001479400300035},
isbn={978-989-8111-31-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,
TI - DRIVER’S DROWSINESS DETECTION BASED ON VISUAL INFORMATION
SN - 978-989-8111-31-9
AU - Javier Flores M.
AU - María Armingol J.
AU - de la Escalera A.
PY - 2008
SP - 30
EP - 35
DO - 10.5220/0001479400300035