Table 1: Minimum, maximum, mean, and standard
deviation values (in cm) for the robot’s position error at
different starting guess of the solution.
(10,10,10)cm (15,15,15)cm (20,20,20)cm
min 0,0002 0,0002 0,0002
max 66,0609 66,0609 0,0351
mean 8,0755 1,8593 0,0035
std 18,1959 10,5717 0,0046
Table 2: Minimum, maximum, mean, and standard
deviation values (in cm) for the robot’s position error of
different groups of landmarks. The results from selecting
the suitable three landmarks with at least one angle greater
than 90
○
are given in column Select.
Landmark groups
1, 2, 3 1, 2, 4 2, 3, 4 1, 3, 4 average Select
in 0,222 0,102 0,097 0,047 0,106 0,20
ax 8,631 10,12 11,01 21,24 6,490 4,07
ean 1,924 1,944 2,136 2,154 1,403 1,50
St
1,511 1,602 2,065 2,520 0,897 0,88
ACKNOWLEDGEMENTS
This work is a result of common research between
the Department of System and Circuit Technology,
Heinz Nixdorf Institute, University of Paderborn and
Scientific Computing Department, Faculty of
Computer and Information Sciences, Ain Shames
University. It is also supported from the Arab
Republic of Egypt cultural department and study
mission.
REFERENCES
Betke, M., and Gurvits, L., 1997. Mobile Robot
Localization Using Landmarks. IEEE Transactions On
Robotics And Automation, Vol. 13, No. 2.
Borenstein, J., Everett, H. R. and Feng, L., 1996. Where
am I? Sensors and Methods for Mobile Robot
Positioning, Technical Report, The University of
Michigan.
Borenstein J., Everett, H. R., Feng, L., and Wehe, D.,
1997. Mobile Robot Positioning: Sensors and
Techniques, Journal of Robotic Systems, vol. 14, , pp.
231-249.
Casanova, E. Z., Quijada, S. D., García-Bermejo, J. G.,
and González, J. R. P., 2002. A new beacon based
system for the localisation of moving objects. 9th
IEEE International Conference on Mechatronics and
Machine Vision in Practice, pp. 59-64, Chiang Mai,
Tailandia.
Casanova, E. Z., Quijada, S. D., García-Bermejo, J. G.,
and González, J. R. P., 2005. Microcontroller based
System for 2D Localisation , Mechatronics, Vol. 15,
Issue 9, pp. 1109-1126.
Chinapirom, T., Kaulmann, T., Witkowski, U., and
Rückert, U., 2004. Visual Object Recognition by 2d-
Color Camera and On-Board Information Processing
For Minirobots. FIRA Robot World Congress Busan,
South Korea.
Cohen, C. and Koss, F., 1993. A Comprehensive Study of
Three Object Triangulation. SPIE Conference on
Mobile Robots, Boston, MA, pp. 95-106.
DeSouza, G.N., and C.Kak, A., 2002. Vision for Mobile
Robot Navigation:ASurvey. IEEE Transactions on
pattern analysis and Machine intelligence, Vol. 24,
No.2.
Ebied, H. M., Witkowski, U., Rückert, U., and Abdel-
Wahab, M. S., 2007. Robot Localization System
Based on 2D-Color Vision Sensor, 4
th
International
Symposium on Autonomous Minirobots for Research
and Edutainment, pp. 141-150, Buenos Aires,
Argentina.
Esteves, J.S., Carvalho, A., Couto, C., 2003. Generalized
Geometric Triangulation Algorithm for Mobile Robot
Absolute Self-Localization. IEEE International
Symposium on Industrial Electronics, pp. 346 – 351.
Kose, H., Celik, B., and Levent Akın, H., 2006.
Comparison of Localization Methods for a Robot
Soccer Team, International Journal on Advanced
Robotic Systems, Vol. 3, No. 4, pp. 295-302.
K-Team, S.A. 2002. Khepera 2 User Manual. Ver 1.1,
Lasanne, Switzerland.
Martinelli, A., Tomatis, N., Tapus, A., and Siegwart, R.,
2003. Simultaneous Localization and Odometry
Calibration for Mobile Robot. IEEE International
Conference on Intelligent Robots and Systems, pp.
1499-1504, Las Vegas, Nevada.
Shoval, S., Mishan, A., and Dayan, J., 1998. Odometry
and Triangulation Data Fusion for Mobile-Robots
Environment Recognition, International Journal on
Control Engineering Practice, Vol. 6, Issue 11, pp.
1383-1388.
Witkowski, U., and Rückert, U., 2002. Positioning
System for the Minirobot Khepera based on Self-
organizing Feature Maps. FIRA Robot World
Congress, pp. 463-468, COEX, Seoul, Korea.
Wolf, J., Burgard, W. and Burkhardt, H., 2005. Robust
Vision-Based Localization by Combining an Image-
Retrieval System with Monte Carlo Localization.
IEEE Transactions on Robotics, Vol. 21, No. 2, pp.
208-216.
Yuen, D. C. K., and MacDonald, B. A., 2005. Vision-
Based Localization Algorithm Based on Landmark
Matching, Triangulation, Reconstruction, and
Comparison, IEEE Transactions On Robotics, Vol. 21,
No. 2, pp. 217-226.
ROBOT LOCALIZATION BASED ON VISUAL LANDMARKS
53