Table 1: a) p = 2, m = 2, b) p = 2, m = 3, c) p = 3, m = 2.
a) N
u
= 1 N
u
= 2 N
u
= 3 N
u
= 4 N
u
= 5
J
1
0.6354 0.6144 0.6034 0.5951 0.5911
J
2
1.9002 1.7126 1.6219 1.5683 1.5338
ϕ
1
0.7171 0.8604 1.4556 1.5468 1.6631
ϕ
2
0.7736 0.9795 1.1555 1.3119
ϕ
3
0.7398 1.0107 1.1649
ϕ
4
0.7299 0.9942
ϕ
5
0.7207
ϕ
2
1
11.8327 9.5201 111.7057 115.1060 124.3589
ϕ
2
2
10.2881 13.1625 19.5663 25.4658
ϕ
2
3
10.6466 15.1063 20.8268
ϕ
2
4
10.6025 14.9204
ϕ
2
5
10.5455
b) N
u
= 1 N
u
= 2 N
u
= 3 N
u
= 4 N
u
= 5
J
1
0.3535 0.3518 0.3560 0.3581 0.3585
J
2
0.7373 0.6985 0.6914 0.6923 0.6931
ϕ
1
95.1171 89.5872 89.5007 96.3644 93.5828
ϕ
2
88.0821 90.1826 88.2265 86.9010
ϕ
3
88.9365 82.4423 91.6918
ϕ
4
79.6011 87.4887
ϕ
5
102.5099
ϕ
2
1
9138.6 8218.2 8306.7 10250.0 9549.4
ϕ
2
2
8341.1 8477.1 8938.1 8517.1
ϕ
2
3
8429.2 7331.5 9513.0
ϕ
2
4
7492.2 8101.1
ϕ
2
5
11619.6
c) N
u
= 1 N
u
= 2 N
u
= 3 N
u
= 4 N
u
= 5
J
1
1.3293 1.2364 1.1721 1.1422 1.1407
J
2
1.8375 1.3703 1.2450 1.1629 1.1177
ϕ
1
2.5244 3.6052 3.7189 3.8635 5.8012
ϕ
2
1.8646 3.0450 3.2257 3.2991
ϕ
3
2.1306 3.4264 3.6449
ϕ
4
2.0898 3.4420
ϕ
5
2.2384
ϕ
2
1
37.0812 109.3184 95.4019 106.2623 687.9498
ϕ
2
2
33.4335 116.5809 121.1664 106.5284
ϕ
2
3
49.0232 135.6229 141.8349
ϕ
2
4
46.1047 131.0049
ϕ
2
5
47.5444
Table 2: no directional change, a) p = 2, m = 2, b) p = 2,
m = 3, c) p = 3, m = 2 (− denotes unstable closed-loop
system).
a) N
u
= 1 N
u
= 2 N
u
= 3 N
u
= 4 N
u
= 5
J
1
0.8846 0.8994 0.8674 0.8914 0.8975
J
2
2.4978 2.6290 2.3793 2.3365 2.2729
b) N
u
= 1 N
u
= 2 N
u
= 3 N
u
= 4 N
u
= 5
J
1
9.5249 11.1171 10.6376 − −
J
2
36.8874 77.8512 62.5581 − −
c) N
u
= 1 N
u
= 2 N
u
= 3 N
u
= 4 N
u
= 5
J
1
1.4536 1.4110 1.3620 1.3450 1.3510
J
2
1.9418 1.6632 1.5240 1.4352 1.4242
REFERENCES
Albertos, P. and Sala, A. (2004). Multivariable Control Sys-
tems. Springer-Verlag, London, United Kingdom.
Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V.
(1994). Linear Matrix Inequalities in System and Con-
trol Theory. Society for Industrial and Applied Math-
ematics, Philadelphia, United States of America, 3rd
edition.
Boyd, S. and Vandenberghe, L. (2004). Convex Optimiza-
tion. Cambridge University Press, United Kingdom.
Camacho, E. and Bordons, C. (1999). Model Predictive
Control. Springer-Verlag, United Kingdom.
Doná, J. D., Goodwin, G., and Seron, M. (2000). Anti-
windup and model predictive control: Reflections and
connections. European Journal of Control, 6(5):455–
465.
Horla, D. (2004). Directional change and anti-windup com-
pensation for multivariable systems. Studies in Au-
tomation and Information Technology, 28/29:53–68.
Horla, D. (2006a). LMI-based multivariable adaptive pre-
dictive controller with anti-windup compensator. In
Proceedings of the 12th IEEE International Confer-
ence MMAR, pages 459–462, Miedzyzdroje.
Horla, D. (2006b). Standard vs. LMI approach to a con-
vex optimisation problem in multivariable predictive
control task with a priori anti-windup compensator. In
Proceedings of the 18th ICSS, pages 147–152, Coven-
try.
Horla, D. (2007a). Directional change and windup phe-
nomenon. In Proceedings of the 4th IFAC Interna-
tional Conference on Informatics in Control Automa-
tion and Robotics, pages CD–ROM, Angers, France.
Horla, D. (2007b). Optimised conditioning technique for
a priori anti-windup compensation. In Proceedings of
the 16th International Conference on Systems Science,
pages 132–139, Wrocław, Poland.
Maciejowski, J. (1989). Multivariable Feedback Design.
Addison-Wesley Publishing Company, Cambridge,
United Kingdom.
Maciejowski, J. (2002). Predictive Control with Con-
straints. Pearson Education Limited, United King-
dom.
Öhr, J. (2003). Anti-windup and Control of Systems with
Multiple Input Saturations: Tools, Solutions and Case
Studies. PhD thesis, Uppsala University, Uppsala,
Sweden.
Peng, Y., Vran
ˇ
ci
´
c, D., Hanus, R., and Weller, S. (1998).
Anti-windup designs for multivariable controllers.
Automatica, 34(12):1559–1565.
Walgama, K. and Sternby, J. (1993). Contidioning tech-
nique for multiinput multioutput processes with input
saturation. IEE Proceedings-D, 140(4):231–241.
DIRECTIONAL CHANGE IN A PRIORI ANTI-WINDUP COMPENSATORS VS. PREDICTION HORIZON
111