5 CONCLUSIONS
This article presents the results of a study dealing
with the improvement of energetic performance of
renewable energy buildings. A performance
indicator (kWh/m
2
/yr) was chosen that allows
comparisons between buildings of different areas
and localizations. A processor-based prototype was
developed, to perform on-line acquisition,
monitoring and control of heat consumption in
renewable energy buildings. The potential for the
fossil energy consumption reduction is illustrated
by the simulation of temperature control of
University’s offices. Mixed online and model-
based predictive control using both external
temperature predictions and real measurements
with time-varying temperature setpoint leads to a
very large fossil energy consumption reduction.
Future work will include the improvement of
the dynamic model, so as to test the developed
control algorithms on larger and more complex
dynamic systems. Furthermore, in-situ application
of the prototype has already begun in our partner’s
headquarters. It is planned to include control
algorithms in addition to real-time data-acquisition
and performance indicator monitoring.
ACKNOWLEDGEMENTS
This work is supported by a fund from the FCE
(Funds for the Competitiveness of the Enterprises,
DERBI cluster). The authors would like to thank
Apex BP Solar, CSTB and Pyrescom for our
collaboration and their involvement in this project.
REFERENCES
ADEME (Agence Départementale de l’Environnement
et de la Maîtrise de l’Energie), 2007. Les chiffres
clés du bâtiment en 2006, Publications de l’ADEME.
Boyde, G., Dutrow, E., Tunnessen, W., 2007. The
evolution of the ENERGY STAR
®
energy
performance indicator for benchmarking industrial
plant manufacturing energy use, J Clean Prod
(2007), doi: 10.1016/j.jclepro., 2007.02.024.
Duffaure-Gallais, I., 2006. La nouvelle réglementation
thermique arrive. Le Moniteur, pages: 16-17.
García, C.E., Prett, D.M., Morari M., 1989: Model
predictive control: Theory and practice - A survey,
Automatica, Vol. 25, n°3, Pages 335-348.
Gungor, M.B., Kyriacou, P.A., Jones, D.P., 1997. A new
micro-controller based wear-time monitor for use
with removable orthodontic appliances. In
Proceedings of the 19th Engineering in Medicine and
Biology society, Vol. 6, pages: 2419 – 2421.
Hensen, J.L.M., 1991. On the thermal interaction of
building structure and heating and ventilation system,
Ph.D. Thesis Technische Univ., Eindhoven
(Netherlands).
Journal Officiel, 2006. Arrêté du 27 juillet 2006 relatif au
contenu et aux conditions d’attribution du label HPE,
République française.
Kalagasidis, A.S., Taesler, R., Andersson C., Nord, M.,
2006: Upgraded weather forecast control of building
heating systems. In Proceedings of the 3rd International
Building Physics Conference, Concordia University,
Montreal, Canada, pages: 951-958.
Kalogirou, S., Bojic, M., 2000. Artificial neural networks
for prediction of the energy consumption of a passive
solar building, Energy, Vol. 25, n°5, Pages 479-491.
Kalogirou, S., Lalot, S., Florides, G., Desmet, B., 2007.
Development of neural network-based fault diagnostic
system for solar thermal applications, Sol. Energy, doi:
10.1016/j.solener.2007.06.010.
Leong, S.S., Vun, C.H., 1998, Design and implementation
of an authentication protocol for home automation
systems, IEEE Transactions on Consumer Electronics,
Vol. 44, n°3, pages: 911-921.
Lygouras, J.N., Botsaris, P.N., Vourvoulakis, J.,
Kodogiannis, V., 2006. Fuzzy logic controller
implementation for a solar air-conditioning system, Ap.
Energy, doi: 10.1016/j.apenergy.2006.10.002.
Maïzi, N., Assoumou, E., 2007. Modélisation prospective et
spécificités de la politique énergétique française,
Journal sur l'enseignement des sciences et technologies
de l'information et des systèmes, vol. 6,
doi :10.1051/J3EA :2007002.
Mendoça, P., Bragança, L., 2003. Energy optimization
through thermal zoning the outer skin, In Proceedings of
the Healthy Buildings 7
th
International Conference,
School of Design and Environment, National Univ. of
Singapore.
Mendoça, P., Bragança, L., 2007. Sustainable housing with
mixedweight strategy - A case of study. Building and
Environment, doi: 10.1016/j.buildenv., 2006.08.025.
Nougier, J.P., 1993. Méthodes de calculs numériques,
Masson.
Sacadura, J.F., 1993. Initiation aux transferts thermiques,
Edition Technique et Documentation.
Segars, S., 1998. The ARM9 family-high performance
microprocessors for embedded applications, In
Proceedings of the International Conference on
Computer Design: VLSI in Computers and Processors,
pages: 230-235.
Sesolis, B, 2006. Amélioration de la performance
énergétique : Une nouvelle réglementation pour tous les
bâtiments neufs, la RT 2005, JMG.
Xingwu, C., Xinhua, J., Lei, W., 2006. Development on
ARM9 System-on-chip Embedded Sensor Node for
Urban Intelligent Transportation System. In
Proceedings of the International Symposium on
Industrial Electronics, IEEE, Vol. 4, Pages: 3270-3275.
ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics
130