REFERENCES
Campion, G., Bastin, G., and Dandrea-Novel, B. (1996).
Structural properties and classification of kinematic
and dynamic models of wheeled mobile robots. IEEE
Transactions on Robotics and Automation, 12(1):47–
62. 1042-296X.
Conceic¸
˜
ao, A. S., Moreira, A. P., and Costa, P. J.
(2006). Model identification of a four wheeled omni-
directional mobile robot. In Controlo 2006, 7th Por-
tuguese Conference on Automatic Control, Instituto
Superior T
´
ecnico, Lisboa, Portugal.
Costa, P., Marques, P., Moreira, A. P., Sousa, A., and Costa,
P. (2000). Tracking and identifying in real time the
robots of a f-180 team. In Manuela Veloso, Enrico
Pagello and Hiroaki Kitano, Robocup-99: Robot Soc-
cer World Cup III. Springer, LNAI, pages 289–291.
Diegel, O., Badve, A., Bright, G., Potgieter, and Tlale, S.
(2002). Improved mecanum wheel design for omni-
directional robots. In Proc. 2002 Australasian Con-
ference on Robotics and Automation, Auckland.
Ghaharamani, Z. and Roweis, S. T. (1999). Learning non-
linear dynamical systems using an em algorithm. In
M. S. Kearns, S. A. Solla, D. A. Cohn, (eds) Ad-
vances in Neural Information Processing Systems.
Cambridge, MA: MIT Press, 11.
Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993).
Novel approach to nonlinear/non-gaussian bayesian
state estimation. IEE Proceedings-F on Radar and
Signal Processing,, 140(2):107–113. 0956-375X.
Julier, S. J. and Uhlmann, J. K. (1997). A new extension
of the kalman filter to nonlinear systems. Int. Symp.
Aerospace/Defense Sensing, Simul. and Controls, Or-
lando, FL.
Khosla, P. K. (1989). Categorization of parameters in the
dynamic robot model. IEEE Transactions on Robotics
and Automation, 5(3):261–268. 1042-296X.
Leow, Y. P., H., L. K., and K., L. W. (2002). Kinematic
modelling and analysis of mobile robots with omni-
directional wheels. In Seventh lnternational Confer-
ence on Control, Automation, Robotics And Vision
(lCARCV’O2), Singapore.
Loh, W. K., Low, K. H., and Leow, Y. P. (2003). Mecha-
tronics design and kinematic modelling of a singu-
larityless omni-directional wheeled mobile robot. In
Robotics and Automation, 2003. Proceedings. ICRA
’03. IEEE International Conference on, volume 3,
pages 3237–3242.
Muir, P. and Neuman, C. (1987). Kinematic modeling for
feedback control of an omnidirectional wheeled mo-
bile robot. In Proceedings 1987 IEEE International
Conference on Robotics and Automation, volume 4,
pages 1772–1778.
Olsen, M. M. and Petersen, H. G. (2001). A new
method for estimating parameters of a dynamic robot
model. IEEE Transactions on Robotics and Automa-
tion, 17(1):95–100. 1042-296X.
Pillay, P. and Krishnan, R. (1989). Modeling, simulation,
and analysis of permanent-magnet motor drives, part
11: The brushless dc motor drive. IEEE transactions
on Industry applications, 25(2):274–279.
Salih, J., Rizon, M., Yaacob, S., Adom, A., and Mamat,
M. (2006). Designing omni-directional mobile robot
with mecanum wheel. American Journal of Applied
Sciences, 3(5):1831–1835.
Tahmasebi, A. M., Taati, B., Mobasser, F., and Hashtrudi-
Zaad, K. (2005). Dynamic parameter identification
and analysis of a phantom haptic device. In Proceed-
ings of 2005 IEEE Conference on Control Applica-
tions, pages 1251–1256.
Williams, R. L., I., Carter, B. E., Gallina, P., and Rosati, G.
(2002). Dynamic model with slip for wheeled omnidi-
rectional robots. IEEE Transactions on Robotics and
Automation, 18(3):285–293. 1042-296X.
Xu, J., Zhang, M., and Zhang, J. (2005). Kinematic model
identification of autonomous mobile robot using dy-
namical recurrent neural networks. In 2005 IEEE
International Conference Mechatronics and Automa-
tion, volume 3, pages 1447–1450.
ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics
196