Figure 8: Hough space for the anchor positions of the ex-
ample in fig. 7.
mentation on FPGA. Visual word matching is sped
up using the ANN-libraries, making use of Kd-trees.
Of course a large part of the memory is used by the
(mostly sparse) hough space. A better description of
the voting space will lead to a great memory improve-
ment of the algorithm.
REFERENCES
Arya, S., Mount, D., Netanyahu, N., Silverman, R., , and
Wu, A. (1998). An optimal algorithm for approximate
nearest neighbor searching. In J. of the ACM, vol. 45,
pp. 891-923.
Ballerini, R., Cinque, L., Lombardi, L., and Marmo,
R. (2005). Rectangular Traffic Sign Recognition.
Springer Berlin / Heidelberg.
Baumberg, A. (2000). Reliable feature matching across
widely separated views. In Computer Vision and Pat-
tern Recognition, Hilton Head, South Carolina, pp.
774-781.
Bay, H., Tuytelaars, T., and Gool, L. V. (2006). Speeded up
robust features. In ECCV.
Fasel, B. and Gool, L. V. (2007). Interactive museum guide:
Accurate retrieval of object descriptions. In Adaptive
Multimedia Retrieval: User, Context, and Feedback,
Lecture Notes in Computer Science, Springer, volume
4398.
Garcia-Garrido, M., Sotelo, M., and Martin-Gorostiza, E.
(2006). Fast traffic sign detection and recognition un-
der changing lighting conditions. In Intelligent Trans-
portation Systems Conference 2006, pp. 811 - 816.
Goedem´e, T., Tuytelaars, T., Nuttin, M., and Gool, L. V.
(2006). Omnidirectional vision based topological nav-
igation. In International Journal of Computer Vision
and International Journal of Robotics Research, Spe-
cial Issue: Joint Issue of IJCV and IJRR on Vision and
Robotics.
Goedem´e, T., Tuytelaars, T., Vanacker, G., Nuttin, M., and
Gool, L. V. (2005). Feature based omnidirectional
sparse visual path following. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
IROS 2005, Edmonton, pages 1003–1008.
Li, F.-F. and Perona, P. (2005). A bayesian hierarchical
model for learning natural scene categories. In Proc.
of the 2005 IEEE Computer Society Conf. on Com-
puter Vision and Pattern Recognition, pages 524531.
Lowe, D. (1999). Object recognition from local scale-
invariant features. In International Conference on
Computer Vision.
Matas, J., Chum, O., Urban, M., and Pajdla, T. (2002). Ro-
bust wide baseline stereo from maximally stable ex-
tremal regions. In British Machine Vision Conference,
Cardiff, Wales, pp. 384-396.
Mikolajczyk, K. and Schmid, C. (2002). An affine invariant
interest point detector. In ECCV, vol. 1, 128–142.
Mindru, F., Moons, T., , and Gool, L. V. (1999). Recogniz-
ing color patters irrespective of viewpoint and illumi-
nation. In Computer Vision and Pattern Recognition,
vol. 1, pp. 368-373.
Rosenfeld, A. and Kak, A. (1976). Digital picture process-
ing. In Computer Science and Applied Mathematics,
Academic Press, New York.
Sandoval, H., Hattori, T., Kitagawa, S., and Chigusa, Y.
(2000). Angle-dependent edge detection for traffic
signs recognition. In Proceedings of the IEEE Intelli-
gent Vehicles Symposium 2000, pp. 308-313.
Schmid, C., Mohr, R., and Bauckhage, C. (1997). Local
grey-value invariants for image retrieval. In Interna-
tional Journal on Pattern Analysis an Machine Intel-
ligence, Vol. 19, no. 5, pp. 872-877.
Sivic, J. and Zisserman, A. (2003). Video google: A text
retrieval approach to object matching in videos. In
Proc. of 9th IEEE Intl Conf. on Computer Vision, Vol.
2.
Tuytelaars, T. and Gool, L. V. (2000). Wide baseline stereo
based on local, affinely invariant regions. In British
Machine Vision Conference, Bristol, UK, pp. 412-422.
Tuytelaars, T., Gool, L. V., D’haene, L., , and Koch, R.
(1999). Matching of affinely invariant regions for vi-
sual servoing. In Intl. Conf. on Robotics and Automa-
tion, pp. 1601-1606.
Viola, P. and Jones, M. (2001). Rapid object detection using
a boosted cascade of simple features. In Computer
Vision and Pattern Recognition.
Zhang, M., Marszalek, S., Lazebnik, S., and Schmid, C.
(2005). Local features and kernels for classication of
texture and object categories: An in-depth study. In In
Technical report, INRIA.
Zhu, S. and Liu, L. (2006). Traffic sign recognition based
on color standardization. In IEEE International Con-
ference on Information Acquisition 2006, pp. 951-955,
Veihai, China.
TRAFFIC SIGN RECOGNITION WITH CONSTELLATIONS OF VISUAL WORDS
227