Burnham, K. J. (1991). Self-tuning Control for Bilinear Sys-
tems. PhD thesis, Coventry Polytechnic.
Diversi, R., Guidorzi, R., and Soverini, U. (2006). Yule-
Walker equations in the Frisch scheme solution of
errors-in-variables identification problems. In Proc.
of the 17th Int. Symposium on Mathematical Theory
of Networks and Systems, Kyoto, Japan.
Ekman, M. (2005). Modeling and Control of Bilinear Sys-
tems: Applications to the Activated Sludge Process.
PhD thesis, Uppsala University.
Hansen, P. C. (2001). Regularization tools: A matlab
package for analysis and solution of discrete ill-posed
problems. Technical report, Department of Mathemat-
ical Modelling, Technical University of Denmark.
Ikonen, E. and Najim, K. (2002). Advanced Process Identi-
fication and Control. Marcel Dekker, Inc., USA.
Kotta, U. and Nomm, S.and Zinober, A. (2003). On state
space realizability of bilinear systems described by
higher order difference equations. In Proc. of 42nd
IEEE Conf. on Decision and Control, volume 6, pages
5685–5690.
Larkowski, T., Linden, J. G., Vinsonneau, B., and Burnham,
K. J. (2008). A novel errors-in-variables approach for
bilinear models: the bilinear Frisch scheme. Internal
report no. CTAC/TL-1/2008, Control Theory and Ap-
plications Centre, Coventry University, Coventry.
Larkowski, T., Vinsonneau, B., and Burnham, K. J. (2007).
Bilinear model identification in the errors-in-variables
framework via the bias-compensating least squares. In
IAR and ACD Int. Conf., Grenoble, France.
Linden, G. J., Vinsonneau, B., and Burnham, K. J. (2007).
Fast algorithms for recursive Frisch scheme system
identification. In IAR and ACD Int. Conf., Grenoble,
France.
Liu, J. (1992). On stationarity and asymptotic inference of
bilinear time series models. Statistica Sinica, 2:479–
494.
Ljung, L. (1999). System Identification - Theory for the
User. Prentice Hall PTR, New Jersey, USA, 2nd edi-
tion edition.
Ljung, L. and S¨oderstr¨om, T. (1987). Theory and practice of
recursive identification. MIT Press, Cambridge, UK.
Martineau, S., Burnham, K. J., Haas, O. C. L., Andrews,
G., and Heeley, A. (2004). Four-term bilinear pid con-
troller applied to an industrial furnace. Control Engi-
neering Practice, 12(4):457–464.
Mohler, R. R. (1991). Nonlinear Systems: Applications to
Bilinear Control, volume 2. Prentice Hall, Englewood
Cliffs, NJ.
Mohler, R. R. and Khapalov, A. Y. (2000). Bilinear con-
trol and application to flexible a.c. transmission sys-
tems. Journal of Optimization Theory and Applica-
tions, 105(3):621–637.
Pearson, R. K. (1999). Discrete-Time Dynamic Models. Ox-
ford University Press, New York, USA.
Rao, T. S. and Gabr, M. M. (1984). An Introduction to
Bispectral Analysis and Bilinear Time Series Models.
Springer-Verlag, Berlin, Germany.
S¨oderstr¨om, T. (2006). Statistical analysis of the Frisch
scheme for identifying errors-in-variables systems.
Technical report, Upsala Univercity, Department of
Information Technology, Upsala, Sweden.
S¨oderstr¨om, T. (2007). Errors-in-variables methods in sys-
tem identification. In Automatica, volume 43, pages
939–958.
S¨oderstr¨om, T., Soverini, U., and Mahata, K. (2002). Per-
spectives on errors-in-variables estimation for dy-
namic systems. In Signal Processing, volume 82(8),
pages 1139–1154.
S¨oderstr¨om, T. and Stoica, P. (1994). System Identification.
Prentice Hall Int., New Jersey, USA.
Young, P. (1984). Recursive Estimation and Time-Series
Analysis. Springer-Verlag, Berlin, Germany.
Yu, D. (1996). Fault diagnosis for industrial systems with
emphasis on bilinear systems. PhD thesis, Coventry
University.
Zheng, W. X. (1998). Transfer function estimation from
noisy input and output data. Int. Journal of Adaptive
Control and Signal Processing, 12:365–380.
Zheng, W. X. (2000). Parametric identification of linear
noisy input-output systems. Cybernetics and Systems,
31(7):803–816.
ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics
44