Table 3: Matrix of processing times of FJSP (10J,10M).
5 CONCLUSIONS
This paper presents a novel approach using parti- cle
swarm optimization to solve the multicriteria .exible
job shop scheduling with total or partial .exibility. It
is based on the vector evaluated particle swarm opti-
mization and the weighted av- erage ranking.
Our work, resulted in to the development of a
generic method to resolve multiobjective opti- miza-
tion. It provides relevant solutions for the individ-
ual optimization of criteria or for the com- promise
between the dierent objectives. Future research will
cover an investigation on the eects of diversity control
in the search performances of multiobjective particle
swarm optimization.
REFERENCES
Abraham A., Guo. H, Liu. H., Swarm Intelligence: Founda-
tions, Perspectives and Applications. Studies in Com-
putational Intelligence (SCI) 26;pp. 3-25; 2006.
Abraham A., Lui H. and Ghang T. G., Variable neigh-
borhood Particle Swarm Optimization Algorithm. In
GECCO’06 Seattle, Washington, USA, July 8-12,
2006.
Chetouane F., Ordonnancement d’atelier tches gnralises,
perturbations, ractivit. Rapport DEA de l’institut na-
tional polytechnique de Grenoble, 1995.
Clerc. M., L’optimisation par essaims particulaires, ver-
sions paramtriques et adaptatives. Edition Herms,
Lavoisier, 2005.
Collette Y., Siarry P., Optimisation Multiobjectif. Edition
Eyrolles, Paris, 2002.
Coello C. A., Lechuga M. S., MOPSO:A Proposal for Mul-
tiple Objective Particle Swarm Optimization. IEEE
Congress on Evolutionary Computation, Honolulu,
Hawaii USA, 2002.
Coello C. A., Pulido G. T., Lechuga M. S., Handling
Multiple Objectives with Particle Swarm Optimiza-
tion. IEEE Transactions on Evolutionary Computa-
tion, IEEE, Piscataway, NJ, 8(3) 256-279, 2004.
Dupas R., Amlioration de Performance des Systmes de
Production: Apport des Algorithmes volutionnistes
aux Problmes d’Ordonnancement Cycliques et flexi-
bles. Habilitation Diriger des Recherches, Universit
d’Artois, 2004.
Hu X., Shi Y., Eberhart R. C., Recent advances in Particle
Swarm. In Proceedings of Congress on Evolutionary
Computation (CEC), Portland, Oregon, 90-97, 2004.
Hu X., Eberhart R. C., Multiobjective Optimization using
Dynamic Neighborhood Particle Swarm Optimiza-
tion. Proceeding of the 2002 Congress on Evolu-
tionary Computation, Honolulu, Hawaii, May 12-17,
2002.
Hu X., Shi Y., Eberhart R.C., Particle Swarm with extended
Memory for Multiobjective Optimization. Proc. of
2003 IEEE Swarm Intelligence Symposium, pp 193-
197. Indanapolis, Indiana, USA, IEEE Service Center,
April 2003.
Kacem I., Hammadi S., Borne P., Approach by Localiza-
tion and Multiobjective Evolutionary Optimization for
flexible Job Shop Scheduling Problems. IEEE Trans-
actions on Systems, man and cybernetics-Part c/ Ap-
plications and reviews vol 32, N.1 February , 2002.
Kacem I., Hammadi S., Borne P., Pareto-optimality Ap-
proach for Flexible job-shop Scheduling Problems:
hybridization of evolutionary algorithms and fuzzy
logic. IEEE Transactions on Systems, man and
cybernetics-Part c/ Applications and reviews vol 32,
N.1 February , 2002.
Kennedy J., Eberhart R. C., Particle Swarm Optimiza-
tion. IEEE International Conference on Neural Net-
works(Perth, Australia). IEEE Service Center, Piscat-
away, NJ, IV, pp. 1942-1948; 1995.
Liu H., Abraham A., Choi O., Moon S. H., Vari-
able Neighborhood Particle Swarm Optimization for
Multi-objective Flexible Job-shop Scheduling Prob-
lems. SEAL 2006, 197-204, 2006.
A NOVEL PARTICLE SWARM OPTIMIZATION APPROACH FOR MULTIOBJECTIVE FLEXIBLE JOB SHOP
SCHEDULING PROBLEM
229