References
1. K. Papagiannaki, N. Taft, Z. Zhang, and C. Diot. Long-Term Forecasting of Internet Back-
bone Traffic. IEEE Trans. on Neural Networks, 16(5):1110–1124, September 2005.
2. V. Alarcon-Aquino and J. Barria. Multiresolution FIR Neural-Network-Based Learning Al-
gorithm Applied to Network Traffic Prediction. IEEE Trans. on Systems, Man and Cyber-
netics - Part C, 36(2):208–220, 2006.
3. P. Cortez, M. Rio, M. Rocha, and P. Sousa. Internet Traffic Forecasting using Neural Net-
works. In Proceedings of the IEEE 2006 International Joint Conference on Neural Networks,
pages 4942–4949, Vancouver, Canada, 2006.
4. B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based Change Detection: Meth-
ods, Evaluation, and Applications. In Proc. of Internet Measurment Conference (IMC’03),
Miami, USA, October 2003. ACM.
5. J. Jiang and S. Papavassiliou. Detecting Network Attacks in the Internet via Statistical Net-
work Traffic Normality Prediction. Journal of Network and Systems Management, 12:51–72,
2004.
6. S. Makridakis, S. Weelwright, and R. Hyndman. Forecasting: Methods and Applications.
John Wiley & Sons, New York, USA, 1998.
7. G. Reinsel. Elements of Multivariate Time Series Analysis. Springer, San Francisco, CA,
second edition, 2003.
8. A. Lapedes and R. Farber. Non-Linear Signal Processing Using Neural Networks: Prediction
and System Modelling. Tech. Rep. LA-UR-87-2662, Los Alamos National Laboratory, USA,
1987.
9. J. Taylor, L. Menezes, and P. McSharry. A Comparison of Univariate Methods for Fore-
casting Electricity Demand Up to a Day Ahead. Int. Journal of Forecasting, 21(1):1–16,
2006.
10. Q. He, C. Dovrolis, and M. Ammar. On the Predictability of Large Transfer TCPThroughput.
In Proc. of SIGCOMM’05, Philadelphia, USA, August 2005. ACM.
11. H. Tong, C. Li, and J. He. Boosting Feed-Forward Neural Network for Internet Traffic
Prediction. In Proc. of the IEEE 3rd Int. Conf. on Machine Learning and Cybernetics, pages
3129–3134, Shanghai, China, August 2004.
12. T.M. ThomasII. OSPF Network Design Solutions. Cisco Press, 1998.
13. W. Stallings. SNMP, SNMPv2, SNMPv3 and RMON 1 and 2. Addison Wesley, 1999.
14. X. Ding, S. Canu, and T. Denoeux. Neural network based models for forecasting. In Proc.
of Applied Decision Technologies Conf. (ADT’95), pages 243–252, Uxbridge, UK, 1995.
15. I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann, San Francisco, CA, second edition, 2005.
16. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer-Verlag, NY, USA, 2001.
17. W. Venables and B. Ripley. Modern Applied Statistics with S. Springer, 4th edition, 2003.
18. P. Cortez. RMiner: Data Mining with Neural Networks and Support Vector Machines using
R. In R. Rajesh (Ed.), Introduction to Advanced Scientific Softwares and Toolboxes, IAEng
publishers, Singapore, In Press.
19. R Development Core Team. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, 2007. ISBN 3-900051-00-3.
20. M. Moller. A scaled conjugate gradient algorithm for fast supervised learning. Neural
Networks, 6(4):525–533, 1993.
21. G. Box and G. Jenkins. Time Series Analysis: Forecasting and Control. Holden Day, USA,
1976.
70