REFERENCES
Agarwal, D. K. (2005). An empirical bayes approach to
detect anomalies in dynamic multidimensional arrays.
In ICDM, pages 26–33.
Agrawal, R., Gunopulos, D., and Leymann, F. (1998). Min-
ing process models from workflow logs. In EDBT
’98: Proceedings of the 6th International Conference
on Extending Database Technology, pages 469–483,
London, UK. Springer-Verlag.
Cook, J. E. and Wolf, A. L. (1998). Discovering models
of software processes from event-based data. ACM
Trans. Softw. Eng. Methodol., Vol. 7(3):p. 215–249.
de Medeiros, A., van der Aalst, W., and Weijters, A. (2003).
Workflow mining: Current status and future direc-
tions. In Meersman, R., Tari, Z., and Schmidt, D.,
editors, On The Move to Meaningful Internet Systems,
volume 2888 of LNCS.
de Medeiros, A. K. A., Weijters, A. J. M. M., and van der
Aalst, W. M. P. (2006). Genetic process mining: A
basic approach and its challenges. Lecture Notes in
Computer Science, 3812:203–215. ISSN 0302-9743.
Donoho, S. (2004). Early detection of insider trading in op-
tion markets. In KDD ’04: Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 420–429, New
York, NY, USA. ACM Press.
Fawcett, T. (2004). Roc graphs: Notes and practical consid-
erations for researchers.
Fawcett, T. and Provost, F. (1997). Adaptive fraud detec-
tion. Data Mining and Knowledge Discovery, Vol.
1:p. 291–316.
Hammori, M., Herbst, J., and Kleiner, N. (2006). Interactive
workflow mining - requirements, concepts and imple-
mentation. Data Knowl. Eng., Vol. 56(1):p. 41–63.
Lee, W. and Xiang, D. (2001). Information-theoretic mea-
sures for anomaly detection. In IEEE Symposium on
Security and Privacy.
Maruster, L., van der Aalst, W. M. P., Weijters, T., van den
Bosch, A., and Daelemans, W. (2001). Automated
discovery of workflow models from hospital data. In
Krse, B., Rijke, M., Schreiber, G., and Someren, M.,
editors, Proceedings of the 13th Belgium-Netherlands
Conference on Artificial Intelligence (BNAIC 2001),
pages 183–190.
Noble, C. C. and Cook, D. J. (2003). Graph-based anomaly
detection. In KDD ’03: Proceedings of the ninth ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 631–636, New York,
NY, USA. ACM Press.
Pandit, S., Chau, D. H., Wang, S., and Faloutsos, C. (2007).
Netprobe: a fast and scalable system for fraud de-
tection in online auction networks. In WWW ’07:
Proceedings of the 16th international conference on
World Wide Web, pages 201–210, New York, NY,
USA. ACM Press.
Rozinat, A. and van der Aalst, W. M. P. (2005). Confor-
mance testing: Measuring the fit and appropriateness
of event logs and process models. In Business Process
Management Workshops, pages 163–176.
Sabhnani, R., Neill, D., and Moore, A. (2005). Detecting
anomalous patterns in pharmacy retail data. In Pro-
ceedings of the KDD 2005 Workshop on Data Mining
Methods for Anomaly Detection.
Schimm, G. (2004). Mining exact models of concurrent
workflows. Comput. Ind., Vol. 53(3):p. 265–281.
van der Aalst, W. M. P. and de Medeiros, A. K. A.
(2005). Process mining and security: Detecting
anomalous process executions and checking process
conformance. Electr. Notes Theor. Comput. Sci., Vol.
121:p. 3–21.
van der Aalst, W. M. P., Weijters, T., and Maruster, L.
(2004). Workflow mining: Discovering process mod-
els from event logs. IEEE Trans. Knowl. Data Eng.,
Vol. 16(9):p. 1128–1142.
van der Aalst Minseok Song, W. M. (2004). Mining social
networks: Uncovering interaction patterns in business
processes. In Desel, J., Pernici, B., and Weske, M.,
editors, Business Process Management: Second Inter-
national Conference, volume 3080 of LNCS, pages pp.
244 – 260.
Wainer, J., Kim, K., and Ellis, C. A. (2005). A workflow
mining method through model rewriting. In Fuks, H.,
Lukosch, S., and Salgado, A. C., editors, Groupware:
Design, Implementation, and Use: 11th International
Workshop, volume 3706, pages p. 184–19, Porto de
Galinhas, Brazil. CRIWG 2005.
ICEIS 2008 - International Conference on Enterprise Information Systems
18