
A LOCKING PROTOCOL FOR DOM API
ON XML DOCUMENTS

Yin-Fu Huang and Mu-Liang Guo
Institute of Electronic and Information Engineering, National Yunlin University of Science and Technology, 123 University

Road, Section 3, Touliu, Yunlin, Taiwan 640, R.O.C.

Keywords: XML databases, concurrency control, DOM API, locking protocols.

Abstract: In this paper, we developed a new DOM API locking protocol (DLP) that adopts the DOM structure for
locking. In order to enhance the concurrency and system performance, we studied operation conflicts more
detailedly. The proposed DLP supports more update operations than the others, and does not imply more
locking costs. Finally, we conducted several experiments to compare with the others and to observe the DLP
performance under different workload parameters.

1 INTRODUCTION

With the widespread use of the eXtensible Markup
Language (XML), more and more applications store,
query, and manipulate their XML documents in
XML database management systems. Therefore, the
proper scheduling of concurrent queries and updates
becomes an important issue, which would affect the
system performance directly. Concurrency control is
a mechanism used to schedule concurrent
transactions such that the correctness of accessed
data is guaranteed. Serializability (Gray, 1993) is a
criteria for the correctness, which claims the
processing results of transactions should be equal to
the one produced by some serial execution. To
ensure serializability, each transaction accessing
data items must follow the rules prescribed by the
concurrency control mechanism.

Among different methods, locked-based
protocols are most popularly used in concurrency
control schemes since they are simple to implement
and ensure serializability. Although an XML
document is presented with the tree structure and a
query has the navigation property, tree and graph-
based locking protocols are not suitable for XML
documents. On the contrary, the two-phase locking
protocol (2PL) is the most suitable for XML
documents. Like other locked-based protocols, 2PL
uses locks to prevent conflicting transactions from
modifying shared data items. However, in the 2PL
scheme, a transaction only gets locks in the growing
phase, and then releases locks in the shrinking phase.

In the past, several protocols in concurrency
control on XML documents have been proposed.
These protocols based on structures and
corresponding interfaces could be classified into
several types. The DataGuide protocols (Grabs,
2002 and Pleshachkov, 2005) focus on XML-
enabled DBMSs. An XML document stored in
XML-enabled databases usually is not represented
as a tree structure physically. Another alternative
focuses on native XML databases. An XML
document in native XML databases is stored as a
tree structure. Besides, based on different interfaces,
protocols could be re-classified into XPath-typed
(Choi, 2003a, Choi, 2003b, Dekeyser, 2004, Izadi,
2007, Jea, 2006, and Zhang, 2004) and DOM-typed
(Haustein, 2004 and Helmer, 2004).

In the paper, we defined eight operations used to
access an XML document, and then proposed a
locking protocol based on a DOM interface. DOM
API is a popular language for accessing and
manipulating data in native XML databases. It
translates an XML document into a DOM tree, and
supports more complex behaviors than merely tree
traversal.

The remainder of the paper is organized as
follows. Section 2 describes an XML document and
a set of access and modification operations for our
protocol. In Section 3, we proposed the protocol
DLP based on the strict two-phase locking. Then,
several experiments were conducted to compare
DLP with other protocols in Section 4. Finally, we
make conclusions in Section 5.

105
Huang Y. and Guo M. (2008).
A LOCKING PROTOCOL FOR DOM API ON XML DOCUMENTS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 105-110
DOI: 10.5220/0001675701050110
Copyright c© SciTePress

2 RELATED WORK

In principle, our research is based on the DOM API
(i.e., Application Program Interface) which is
supported by most native databases to access and
manipulate XML documents. Although DOM API
provides several interfaces to manipulate XML
documents, we only focus on elements, attributes,
and texts since they are the most important theme of
data sharing. Similar to XML document trees, the
Document Object Model (i.e., DOM) represents
XML documents as trees, as shown in Figure 1.

Figure 1: DOM tree representation.

Till now, there are two classifications in the
previous researches on concurrency control
manipulation with DOM API. One is XML
Transaction Coordinator (Haustein, 2004) that
provides a taDOM tree for storing XML documents,
and proposed the taDOM protocol to ensure
serializability. The other one is Natix that proposed
Doc2PL, Node2PL, NO2PL, and OO2PL protocols
(Helmer, 2004) to ensure serializability. Since
OO2PL has been verified to have the best
performance, our research stretches OO2PL.
Although OO2PL acquires locks on the pointers of
nodes (i.e., the first child, the last child, the previous
sibling, and the next sibling), OO2PL only classifies
operations into observer and mutator ones. In order
to enhance the concurrency degree, our protocol
distinguishes operations more detailedly.

3 DLP

3.1 Operation Conflicts

The operations in our protocol consist of eight types:
R, N, IB, AP, UP, RN, RM, and RP standing for
Read, Navigate, Insert-Before, Append, Update,
Rename, Remove, Replace, respectively. R and N

are both read operations, but R is for the
manipulation of nodes and N is for the navigation of
paths.

We define a transaction T as a sequence of
DOM API operations. Operation conflicts may occur
when the operations from different transactions are
interleaved with each other, thereby producing
incorrect results. The criterion of correctness is
based on the serializability of concurrent
transactions. In order to analyze the conflicts
between operations, we classify operations into
content operations and structural operations. Content
operations consisting of R, UP, and RN denote the
ones which manipulate data values at nodes.
Structural operations consisting of N, IB, AP, RM,
and RP denote the ones which navigate or modify
the structure of a DOM tree. The structural
operations get involved in the pointers within a
node.

Different from that R reads the content of a
target node (i.e., node name or text value), N reads
the pointer of each node (i.e., the first child or the
next sibling, et al.) along the path specified by a
transaction. Next, RM (or RP) is similar to N, but it
modifies the pointer to the target node into nil (or
the pointer to the replacing node). Finally, IB (or AP)
modifies the previous sibling pointer (or the last
child pointer) of the target node into the pointer to
the new node. However, not only the relevant
pointer of the target node but also the pointers of
related nodes should be modified together.

Basically, the two kinds of operations would not
conflict with each other, since content operations
only manipulate node values, whereas structural
operations only deal with the DOM structure.
However, always a transaction executing a content
operation has to use structural operation N to reach
the target node. Thus, while these two kinds of
operations work on the same target node, the
involved structural operations would conflict with
themselves.

As mentioned above, we summarize the
operation conflicts in Table 1 and 2. Within the
matrix, symbols “○” and “×” denote the concurrent
operations are OK and in conflict, respectively.
Beside symbols “ ○ ” and “ × ” , we also use
symbol “ △ ” to denote the concurrent operations
are in conflict in some situation.

Table 1: Conflict matrix of content operations.

 R UP RN
R ○ ○ ×

UP ○ × ○
RN × ○ ×

ICEIS 2008 - International Conference on Enterprise Information Systems

106

Table 2: Conflict matrix of structural operations.

 N IB AP RM RP
N ○ • • × ×
IB • × ○ × ×
AP • ○ × × ×
RM × × × × ×
RP × × × × ×

3.2 DLP

In this section, we proposed a DOM API locking
protocol (DLP) to ensure the serializability of
concurrent transactions. DLP is with seven lock
modes including S-, SC-, W-, N-, NC-, P-, and X-
locks. While an operation intends to work on a node,
it must acquire an appropriate lock. In general, S-
lock, W-lock, and N-lock are acquired by content
operations. Next, SC-lock and NC-lock are also
acquired by content operations, but these two locks
are only used for the nodes with predicates in a path.
Finally, P-lock and X-lock are acquired by structural
operations. Since content operations would not
conflict with structural operations, there is no
compatibility problem between the two types of lock
modes; i.e., S-, SC-, W-, N- and NC- locks on nodes,
and P- and X-locks on pointers. The seven lock
modes used in DLP would be explained as follows.

(1) S-lock: S-lock is a shared lock designed for
R. S-lock is compatible with itself (for R), SC-lock
(for R with predicates), and W-lock (for UP), but
incompatible with N-lock (for RN) and NC-lock (for
RN with predicates).

(2) SC-lock: SC-lock is also a shared lock
designed for R, but is only used for the nodes with
predicates in a path. Since the predicates with
attributes or node values specified in the path are
also parts of the path, the attributes or node values
should not be modified by UP. Thus, SC-lock is
compatible with itself (for R with predicates), but
incompatible with W-lock (for UP), N-lock (for
RN), and NC-lock (for RN with predicates).

(3) W-lock: W-lock is a lock designed for UP.
Modifying attributes or node values is nothing to do
with modifying node names, unless predicates are
specified in the path for RN. Thus, W-lock is
compatible with N-lock (for RN), but incompatible
with itself and NC-lock (for RN with predicates).

(4) N-lock: N-lock is a lock designed for RN. N-
lock is incompatible with itself and NC-lock (for RN
with predicates).

(5) NC-lock: NC-lock is an exclusive lock
designed for RN, but is only used for the nodes with
predicates in a path. Since the predicates with
attributes or node values specified in the path are
also parts of the path, the attributes or node values
should not be modified by UP. NC-lock is
incompatible with itself.

(6) P-lock: P-lock is a shared lock designed for
N. Thus, P-locks are issued along the specified path
from the root to the target node. Basically, P-lock is
similar to S-lock, but the difference between them is
P-lock for pointers and S-lock for contents. P-lock is
compatible with itself, but incompatible with X-
lock, since X-lock is for pointer modification.

(7) X-lock: All structural operations except N
would modify the structure of a DOM tree.
Whatever the operations are, the operations working
on the same pointer would conflict with each other.
Thus, X-lock is an exclusive lock designed for these
operations. While these operations attempt to modify
relevant pointers, they would issue X-locks on these
pointers. X-lock is incompatible with itself.

As shown in Table 3, we summarize the lock
compatibility in DLP. Within the matrix, symbols
“○”, “×”, and “-” denote locks are compatible with,
incompatible with, and not related to each other,
respectively.

Table 3: Lock compatibility matrix.

 S SC W N NC P X
S ○ ○ ○ × × - -

SC ○ ○ × × × - -
W ○ × × ○ × - -
N × × ○ × × - -

NC × × × × × - -
P - - - - - ○ ×
X - - - - - × ×

As an example shown in Figure 2, we observe
the locks on a DOM tree, which are issued by three
transactions following DLP. First, T1 intends to read
node n6 with path /n1/n2/n6=’t1’. Since R must
ensure the node value of node n6, it issues SC-lock
on node n6. Besides, T1 also issues P-locks for the
down-link pointers of all preceding nodes from the
root. Simultaneously, T2 intends to update node n6
also along the same path. Thus, T2 issues P-locks for
the same path and W-lock on node n6. As a result,
T2 is declined because of existing SC-lock already
issued by T1. Meanwhile, T3 attempts to remove
node n3. Thus, T3 issues X-locks for all relevant
pointers to node n3. Since there is no lock

A LOCKING PROTOCOL FOR DOM API ON XML DOCUMENTS

107

Figure 2: Locks issued on a DOM tree.

incompatibility, T3 would remove node n3
successfully.

Besides, a possible schedule for the example
following DLP is illustrated as shown in Figure 3.
There, P- and X-lock with a subscript denote on
what pointer they are issued; i.e., F for First child, L
for Last child, P for Previous sibling, and N for Next
sibling. T1 and T2 cannot be executed concurrently
after step 7, since SC-lock on node n6 issued by T1
would exclude W-lock on node n6 issued by T2. T2
can acquire W-lock on node n6 and continue
execution only after T1 releases SC-lock on node n6
at step 11.

Figure 3: Schedule for the example.

4 PERFORMANCE
EVALUATION

4.1 Simulation Model

In order to compare the performances among DLP,
OO2PL, and taDOM, a simulation model is
proposed, as shown in Figure 4. The model
programmed with General Purpose Simulation

System (i.e., GPSS World) consists of a transaction
generator, several queues, a concurrency control
mechanism to schedule transactions under these
three protocols, and an object mechanism to access
document nodes.

Figure 4: Simulation model.

4.2 Experiments

The workload parameters used in the simulation can
be classified into two types (i.e., transaction
behavior and system environment), as shown in
Table 4. The transaction behavior related parameters
include 1) number of operations in a transaction (i.e.,
NOT), 2) percentages of exclusive operations (i.e.,
PEO), 3) transaction arrival time (i.e., TAT), and 4)
restart time (i.e., RT). The system environment
related parameters include 1) document sizes (i.e.,
DS) and 2) degree of multiprogramming (i.e., DMP).
Finally, Table 5 shows all operational time cost. In
the experiments, OO2PL and DLP have the same
time cost, whereas taDOM has 1.5~2 times cost of
them. The reason is that since the document
structure in taDOM is different from the original
DOM structure, it takes more time to execute
operations.

Table 4: Workload parameters.

transaction behavior
NOT 10~130
PEO 25%, 50%,
TAT 20 (μs)
RT 3 (μs)
system environment
DS(in nodes) 781,3906, 9531
DMP 1~18

ICEIS 2008 - International Conference on Enterprise Information Systems

108

Table 5: Operational time cost.

R 4(μs) N 2(μs) RM 6(μs)
UP 5(μs) IB 8(μs) RP 8(μs)
RN 5(μs) AP 8(μs) Lock 1(μs)

4.2.1 Varying Number of Operations in a
Transaction

The experiment is to evaluate the performances of
three protocols by varying the number of operations
in a transaction. The workload parameters
particularly specified in the experiment are 1) PEO
50%, 2) DS 781, and 3) DMP 10.

As shown in Figure 5, the response time rises
definitely when the number of operations in a
transaction increases, but DLP has the minimum
response time among them. Besides, we also found
that the curve slope of taDOM is sharper than the
other two, due to its more operational time cost. As a
result, DLP is the superior one among three
protocols in the throughput as shown in Figure 6.

Figure 5: Response time vs. NOT.

As shown in Figure 7, the conflict ratio around
the scale 70 is almost the highest for all three
protocols. As increasing the number of operations in
a transaction before reaching 70, the number of
target nodes would increases, and this makes the
conflict ratio higher. However, after reaching 70, the
more target nodes are, the more the paths are in a
transaction. Thus, the conflict ratio would not
increase, and even somewhat decrease. Surprisingly,
OO2PL has higher conflict ratio than the other two,
since DLP and taDOM provide more lock modes
than OO2PL.

4.2.2 Varying Degree of Multiprogramming

The experiment is to evaluate the performances of
three protocols by varying the degree of
multiprogramming. The workload parameters

Figure 6: Throughput vs. NOT.

Figure 7: Conflict ratio vs. NOT.

multiprogramming. The workload parameters
particularly specified in the experiment are 1) NOT
50, 2) PEO 50%, and 3) DS 781.

As shown in Figure 8, although the response
time of OO2PL and taDOM increases slightly when
the degree of multiprogramming increases, the
changes are not obvious. Nevertheless, for the
response time and the throughput as shown in Figure
8 and Figure 9, DLP is still the best one among
them. Similar to Experiment 1, for the conflict ratio
as shown in Figure 10, OO2PL has higher conflict
ratio than the other two.

Figure 8: Response time vs. DMP.

A LOCKING PROTOCOL FOR DOM API ON XML DOCUMENTS

109

Figure 9: Throughput vs. DMP.

Figure 10: Conflict ratio vs. DMP.

5 CONCLUSIONS

In this paper, we proposed a locking protocol for
DOM API, called DLP, to reduce the conflict ratio
and then enhance the system throughput. In order to
achieve the goals, we analyzed operation conflicts
detailedly. The proposed DLP supports more update
operations than the others. Furthermore, DLP also
supports the specified predicate in the path, and does
not imply more locking costs. To evaluate DLP, we
conducted several experiments to compare with the
others and to observe the DLP performance under
different workload parameters. From the
experimental results, we found that DLP has better
performances than the others.

REFERENCES

Choi, E. H. and Kanai, T., 2003, XPath-based concurrency
control for XML data, Proc. the 14th Data Engineering
Workshop, pp. 302-313.

Choi, Y. and Moon, S., 2003, Lightweight
multigranularity locking for transaction management

in XML database systems, Journal of Systems and
Software, Vol. 78, No. 1, pp. 37-46.

Dekeyser, S. and Hidders, J., 2004, A transaction model
for XML databases, World Wide Web: Internet and
Web Information Systems, Springer, Vol. 7, No. 1, pp.
29–57.

Grabs, T., Bohm, K., and Schek, H., 2002, XMLTM:
efficient transaction management for XML
documents, Proc. the ACM International Conference
on Information and Knowledge Management, pp. 142-
152.

Gray, J. and Reuter, A., 1993, Transaction Processing:
Concepts and Techniques, Morgan Kaufmann.

Haustein, M. and Härder, T., 2004, Adjustable transaction
isolation in XML database management systems,
Proc. the 2nd International XML Database
Symposium (XSym), LNCS 3186, Springer, pp. 173-
188.

Helmer, S., Kanne, C. C., and Moerkotte G., 2004,
Evaluating lock-based protocols for cooperation on
XML documents, SIGMOD Record, Vol. 33, No. 1,
pp. 58-63.

Izadi, K., Asadi, F., and Haghjoo, M. S., 2007, XPLC: a
novel protocol for concurrency control in XML
databases, IEEE/ACS International Conference on
Computer Systems and Applications, pp. 450-453.

Jea, K. F. and Chen, S. Y., 2006, A high concurrency
XPath-based locking protocol for XML databases,
Information and Software Technology, Vol. 48, No. 8,
pp. 708-716.

Pleshachkov, P., Chardin, P., 2005, and Kuznetsov S.,
XDGL: XPath-based concurrency control protocol for
XML data, Lecture Notes in Computer Science, Vol.
3657, pp. 145-146.

Zhang, W., Liu, D., and Sun, W., 2004, XR-lock: locking
XML data for efficient concurrency control, Proc. the
5th World Congress on Intelligent Control and
Automation, pp. 3921-3925.

Document Object Model, http://www.w3.org/DOM/.
Extensible Markup Language, http://www.w3.org/XML/.
GPSS World, http://www.minutemansoftware.com/.
Natix, http://pi3.informatik.uni-mannheim.de/~moer/

natix.html.

ICEIS 2008 - International Conference on Enterprise Information Systems

110

