
DIAPASON: A FORMAL APPROACH FOR SUPPORTING AGILE
AND EVOLVABLE INFORMATION SYSTEM SERVICE-BASED

ARCHITECTURES

Hervé Verjus and Frédéric Pourraz
University of Savoie - Polytech’Savoie

LISTIC-LS - Language and Software Evolution Group
BP 80439, 74344 Annecy-le-Vieux Cedex, France

Keywords: Information system architecture, SOA, Services orchestration, BPM, Dynamic evolution, π-calculus.

Abstract: This paper presents a novel approach called Diapason, for expressing, verifying and deploying evolvable
information system service-based architectures. Diapason promotes a π-calculus-based layered language and
a corresponding virtual machine for expressing and executing dynamic and evolvable services orchestration
that support agile business processes. Information system service-based architecture may dynamically evolve,
whatever the changes may occur during the services orchestration lifecycle.

1 INTRODUCTION

Service-Oriented Architectures (SOA) is a recent
paradigm for building large scale information sys-
tem service-oriented architectures (IS-SOA) from dis-
tributed services. One of the main interest of SOA
is basically the underlying ability of such architec-
ture to inherently being evolvable; because the un-
derlying idea of SOA is that the services are loosely
coupled and the SOA could be adapted to its envi-
ronment. Services are supposed to be autonomous,
self-contained, and we do not control nor we have
authority over them. When considering information
system perspective, the openess, flexibility, agility of
such information system service-oriented architecture
is very challenging for addressing new functionalities,
time to market, etc. SOAs introduce new engineering
issues (Fitzerald and Olsson, 2006; Papazoglou et al.,
2006) and SOA evolution is becoming very challeng-
ing (Papazoglou et al., 2006). Thus, important engi-
neering questions are addressed to service-based in-
formation system architects: what about the quality
of IS-SOA ? How can we ensure that IS-SOA fit ex-
pectations ? How are IS-SOAs able to be dynamically
adapted ? How can we ensure that the executed IS-
SOA is consistent with the design ?
We present in this paper our formal language called
π-Diapason that lets the user/architect to formally ex-
press and control dynamic evolvable web services or-

chestrations. From service-oriented information sys-
tem engineering perspective, service orchestration is
a key issue as it supports (at least partially) business
processes.
The section 2 of this paper will present works and
challenges related to SOA engineering. Section 3 will
present our formal language, called π-Diapason, for
designing evolvable IS-SOAs and section 4 will then
conclude.

2 RELATED WORK AND
CHALLENGES

Services orchestration addresses business process
through services invocations scheduling and organi-
sation. Services orchestration aims at defining ex-
ecutable processes by providing orchestration lan-
guages (among the most well known BPEL, XLANG,
WSFL, etc. (Peltz, 2003)) that are executable lan-
guages (by the way of workflow engines). BPEL
allows to define abstract business processes and ex-
ecutable processes. But such languages lack in ser-
vices orchestration reasoning, reuse, dynamic evolu-
tion (Papazoglou et al., 2006; Ravn et al., 2006): i.e.
business processes expressed using these languages
cannot be formally checked, nor they can evolve dy-
namically.

76
Verjus H. and Pourraz F. (2008).
DIAPASON: A FORMAL APPROACH FOR SUPPORTING AGILE AND EVOLVABLE INFORMATION SYSTEM SERVICE-BASED ARCHITECTURES.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 76-81
DOI: 10.5220/0001677000760081
Copyright c© SciTePress



During the part three years, some works (Salaün et al.,
2004; Fu et al., 2004; Foster et al., 2006; Solanki
et al., 2006; Chirichiello and Salaün, 2005) have been
devoted to employ formal approaches for services
orchestration definition and analysis. These works
mainly consider BPEL as the core language for ex-
pressing service orchestration. Thus, authors propose
mappings approaches between formal languages and
BPEL. As these languages are not expressive equiv-
alent, mappings/transformation produce gap and dis-
crepencies and analysis cannot be exhaustive enough.
Our approch we will introduce hereafter, deals si-
multaneously with two important considerations that
other approches do not: (i) we propose a new formal
and executable language (named π-Diapason) for or-
chestrating services avoiding mappings and transfor-
mations from or to BPEL; (ii) π-Diapason is based
on the π-calculus that is the most expressive process
algebra (complete in sense of the Turing machine).
As consequence, π-Diapason is more powerful than
BPEL, π-Diapason is executable, π-Diapason sup-
ports evolvable services orchestration formalization
that can be analyzed and executed.

3 EVOLVABLE IS-SOAS
FORMALIZATION

3.1 π-Diapason Formal Foundations

Diapason (Pourraz and Verjus, 2007) is a π-calculus
based approach allowing formal services based sys-
tems modeling, deployment and execution. The aim
of using a process algebra (which formally models in-
teractions between processes (Salaün et al., 2004)) as
a fundament is to provide a mathematical model in
order to guarantee the software conformance with the
end-user’s requirements. In other words, thanks to a
mathematical description, a services based system de-
scription can be proven. Different process algebras
have been provided, for example CSP (Hoare, 1985),
CCS (Milner, 1989), π-calculus (Milner, 1999), etc.
In our case, we have adopted the π-calculus due to
its main feature: the process mobility. This concept
allows us to dynamically evolve application’s topol-
ogy by the way of processes exchanges. In the case of
services orchestration, processes (i.e. orchestrations)
is formally defined in π-calculus terms of behaviours
and channels. A channel aims at connecting two be-
haviours and lets them interacting together. The first
order π-calculus has a restricted policy according to
the type of informations which can be transited over a
channel. Only simple data or channel can be transmit-

ted but in never way a behaviour. Transiting a channel
reference over another channel provides a way, for a
process A, which has got a channel with a process B
and another channel with a process C, to send, for ex-
ample to B, its channel with C. Finally, the processes
B and C which are not able to communicate as far
for now, can now communicate with a common chan-
nel. This his the first kind of mobility. In our case, π-
Diapason is based on the high order π-calculus which
is more powerful. In addition to the first kind of mo-
bility, hight order π-calculus let channels to exchange
channels as well as behaviours. This brings a more
powerful mobility. In this way, a behaviour can send
(via a channel) a behaviour to another behaviour. The
transmitted behaviour could be executed by the be-
haviour’s receiver. Thus, this latter may be dynami-
cally inherently modified by the behaviour it just has
received.
π-Diapason aims at proposing well defined formal ab-
stractions for expressing services orchestration that
can be then executed (because π-Diapason is an ex-
ecutable formal language); π-Diapason:

• allows the IS-SOA architect to design and specify
IS-SOAs (focusing on services orchestration);

• provides Domain Specific Layer (see below) in or-
der to simplify IS-SOA design;

• is formally defined, based on π-calculus;

• supports dynamic IS-SOA evolution (focusing on
services orchestration dynamic evolution);

• it is executable: it is powerful and expressive
enough that a virtual machine can interprete it.

Thus, there is no gap between the design (abstract
level) and the corresponding implementation (con-
crete level) as it is the same language that covers both
levels. There is no mapping rules, and no need for
consistency management. The IS-SOA specified will
be the one that will be interpreted. IS-SOA’s execu-
tion is precisely carried out by the π-Diapason virtual
machine; this latter can be used for IS-SOA simula-
tion and validation purpose and is the runtime engine
that interpretes services orchestration expressed in π-
Diapason.

3.2 π-calculus Basis

Thanks to the π-calculus (Milner, 1989), some opera-
tors are required (we defined naming conventions: up-
per case letters stand for processes while lower case
letters stand for variables):

• µ.P: the prefix of a process by an action where µ
can be :

DIAPASON: A FORMAL APPROACH FOR SUPPORTING AGILE AND EVOLVABLE INFORMATION SYSTEM
SERVICE-BASED ARCHITECTURES

77



– x(y): a positive prefix, which means the receiv-
ing event of the variable y on the channel x,

– x̄y: a negative prefix, which means the sending
event of the variable y on the channel x,

– τ: a silent prefix, which means an unobservable
action,

• P|Q: the parallelisation of two processes,

• P + Q: the indeterministic choice between two
processes,

• [x = y]P: the matching expression,

• A(x1, ..., xn)
de f
= P: the process definition which

allows to express the recursion.

Starting for the 0 process (i.e. the inactive process),
the definition of a P process can be expressed as
follows:
P

de f
= 0 — x(y).P — x̄y.P — τ.P — P1—P2 — P1+P2

— [x = y]P — A (x1, ..., xn)

π-Diapason has been designed as a layered lan-
guage which provides three abstraction levels. The
π-Diapason formal definition and implementation are
given in (Pourraz and Verjus, 2007).

Figure 1: π-Diapason as a layered language.

3.3 The First Layer

The π-Diapason first layer is the expression of the
high order, typed, asynchronous and polyadic π-
calculus (Milner, 1999):

• polyadic for simultaneously sending several val-
ues on a same channel (i.e. in order to invoke a
service with some parameters),

• asynchonous; thus a process that sends a value on
a channel is not blocked event if the receiver is not
ready to proceed the receiving action,

• typed for allowing typed value declaration. Thus,
type checking is then possible,

• high order for allowing to pass connections and
processes on channels that stands for mobility
(we will employ π-calculus mobility as concep-
tual means for evolvable services orchestration).

The π-Diapason virtual machine supports this
first layer. The π-Diapason first layer non-symbolic
syntax is a XSB (Sagonas et al., 2006) Prolog-based
syntax. Given the naming conventions: a process’s
name begins with a lower case letter while variable’s
name begins either with an underscore character “ ”,
either with a upper case letter, this first layer syntax
definition is as follows:

0 ≡ terminate
P ≡ apply(p)
P.Q ≡ sequence(apply(p), apply(q))
x(y) ≡ receive(X, Y)
x̄y ≡ send(X, Y)
τ ≡ unobservable
P — Q ≡ parallel split([apply(p), apply(q)])
P + Q ≡ deferedChoice([apply(p), apply(q)])
[x = y] P ≡ if then(C, apply(p))
or if then else(C, apply(p), apply(q))

Process Definition and Application. A process can
be defined and applied in two different ways.

• the first one consists in creating an anonymous
process that is applied only once (and cannot be
reused). Such process is called as behaviour and
is declared and applied as follows:

apply(behaviour (...)).

• the second way consists in first defining a named
process that can be possibly applied several times
in a given services orchestration. Such process is
called as process and its definition and application
are as follows:

process(process_name(_parameter1 , _parameter2 , ...),
behaviour (...))

...
apply(process_name(_value1 , _value2 , ...))

Inter-process Communication Channels can be
defined as connections. A connection is named. We
may send a value on a connection connection name.

send(connection(’connection_name ’), _value)

Values and Variables. Values are literals (integers,
floats, booleans, strings). Variables are named (with a
first character that is either the underscore character,
either a upper case letter). A variable’s value can be
either a literal, either a connection or a process.

ICEIS 2008 - International Conference on Enterprise Information Systems

78



Collections. A collection is either a list, either an
array. A list is sorted collection that contains values
that may of different types while an array only con-
tains same type values.

list([_value1 , _value2 , ...])
array([_value1 ,_value2 , ...])

We introduced an iterate operator for iterating
over a collection. Iteration consists in executing a be-
haviour at each collection’s element.

iterate(_collection , _iterator , _behaviour)

New Types Definition can be added in the lan-
guage. We do not detail this feature in this paper.

3.4 The Second Layer

The π-Diapason second layer is defined on top of the
first layer, using the first layer language. This second
abstraction level is the expression of the previously
mentioned workflow patterns: it is itself a formal pro-
cess pattern definition language. The twenty first pat-
terns proposed in (van der Aalst et al., 2003) are cur-
rently described in this layer and we will define some
others soon. This second layer:

• lets us to describe any complex process in an eas-
iest way and at a higher level of abstraction, than
only using the first layer (π-calculus definition
layer that is less intuitive);

• allows the user to define recurrent structures that
will serve as language extensions and will be
reused in other process pattern definitions. We
have currently express some patterns in order to
provide a first library but, as we mentioned, any
other structure can be described using this layer;

• contains the formal definition of the services or-
chestration paterns. Thus, future verification tasks
could be performed;

• is generic enough to be domain independant and
can be served as basis for domain-specific lan-
guages defined upon it.

Let us take the example of the synchronization
pattern, called synchronize. This pattern allows to
merge different parallelized processes. Expressed us-
ing the first layer, its description is the following:

pattern(synchronize(connections(_connections)),
iterate( _connections ,

iterator(_connection),
behaviour(receive(_connection , _values)))).

The synchronize pattern takes a list of connections
(i.e channels in π-calculus) as parameters. The length

of the list corresponds to the number of paralleled pro-
cesses. Once applied, this pattern will use the iterate
behaviour provided by the first layer. The iterate be-
haviour takes three parameters: a list (on which one
will iterate), the iteration variable and a behaviour
which will be applied for each iteration. Thanks to
the synchronize pattern, the iterate pattern is used as
follows: the list passed as parameter is a list of con-
nections; thus, the iteration variable is a connection
(of the list); the behaviour is defined as a receiving
action attempt on the current connection (the iteration
variable value). When the iterate pattern is terminated
(i.e. all of the connections involved have received any
value), the orchestration process goes on to the next
steps. Thus, this layer contributes significantly to the
services orchestration by using formal orchestration
patterns. π-Diapason second layer constitutes a novel
and extensible services orchestration formal language
and is a serious alternative to well known but less ex-
pressive and less extensible orchestration languages
(BPEL, WSFL, etc.).

3.5 The Third Layer

This layer is a domain specific layer. In our case it
provides to the end user, language for formalizing
web services orchestration (it consists in a Domain
Specific Language). This third abstraction level is de-
fined by using the two previous layers; thus, an in-
formation system Web service oriented architecture
expressed in this third level language is directly ex-
pressed as a π-calculus process. This layer lets us to
describe:

• the behaviour of a services orchestration,

• the orchestration’s inputs and outputs,

• the complex types manipulated and required in
such services orchestration,

• operations of all of the services involved in the
orchestration.

In order to define web services orchestrations, we
have to express web services operations involved in
the orchestration. We do not care how services are im-
plemented but we just need operations provided. We
obtain operations’ specifications by analyzing WSDL
files that contain all required information, among
them:

• the operation’s name;

• the operation’s parent web service;

• the operation’s invocation URL;

• the operation’s parameters;

• the operation’s return value (optional).

DIAPASON: A FORMAL APPROACH FOR SUPPORTING AGILE AND EVOLVABLE INFORMATION SYSTEM
SERVICE-BASED ARCHITECTURES

79



Operation concept is defined in terms of types of
the π-Diapason second layer.

type(operation , list([operation_name , service , url,
requests , response])).

...
type(operation_name , string).
type(service , string).
type(url, string).
...

We do not explain deeper such operation complete
definition (request and response are not detailed in
this paper).

Thanks to the communication protocol (SOAP)
employed in Web Service Oriented Architectures,
complex types have to be formalized. Each complex
type formalization includes the complex type name,
its namespace and its constituents (other types). This
formalization is not presented here.

Invoking Operation is formalized as a π-calculus
process called invoke. Such invocation process takes
some parameters: the operation name, a collec-
tion containing the operation arguments and a return
value. In term of π-Diapason first layer concepts, such
definition consists in sending a message on a connec-
tion named request and then, waiting for a message
on a connection named response. The definition of
the invocation process is given as follow:

process(invoke(operation(_operation), requests_values(
_requests), response_value(_response)),

sequence(send(connection(’request ’), operation_value(
list([operation(_operation), requests_values(
_requests)]))),

receive(connection(’response ’), response_value(
_response)))).

Web Services Orchestration is then defined as a
π-Diapason second layer process. Such process takes
four parameters: the name of the orchestration (re-
member that a named process can be reused as neces-
sary), the orchestration parameters (i.e. a collection),
a return value and a behaviour that orchestrates some
invocation processes. The orchestration process be-
haviour consists in applying the behaviour passed as
parameter. Such definition implies new types defini-
tion (i.e. parameters, return, etc.) that are not intro-
duced in the paper.

type(orchestration_name , string).
process(orchestration(orchestration_name(_name),

parameters(_parameters), return(_return),
behaviour(_behaviour)),

apply(behaviour(_behaviour))).

3.6 IS-SOA Dynamic Evolution

Thanks to the π-calculus mobility, we may modify the
services orchestration dynamically, at runtime, with-
out to stop this runtimed orchestration. Inherently,

due to the layered languages we propose, a services
orchestration expressed using the third layer language
is semantically and formally defined as a π-calculus
process (in term of the first layer language). Evolving
a services orchestration is quite as the same as evolv-
ing a π-calculus process (Pourraz and Verjus, 2007).

Figure 2: The services orchestration evolution process.

We are now explaining how a services orchestra-
tion formally defined using π-Diapason third layer
is able to evolve dynamically (at runtime). The or-
chestration behaviour (see the orchestration in the left
part of the Figure 2) consists in scheduling the Web
services operations invocations by the way of pro-
cess patterns (sequence, parallel, conditional expres-
sions) defined in the second layer of the π-Diapason
language. In order to perform the external evolu-
tion, an “evolution point” has been defined. A con-
nection called “EVOLVE”, defined in the services
orchestration π-Diapason code, is a connection for
firing and receiving services orchestration changes.
This connection allows us to dynamically pass a be-
haviour to the orchestration (i.e. conform to pro-
cess mobility (Milner, 1999)). Once received (the
evolved behaviour variable is becoming not null),

this changed or new behaviour (see the orchestration
in the right part of the Figure 2) can be applied within
the orchestration (the receiver). Such behaviour ap-
plication modifies dynamically the orchestration ac-
cording to the behaviour’s π-Diapason definition that
integrates changes. Otherwise, when no behaviour
is received, the orchestration process goes on as it
was planned, without modification. The following
piece of code is a services orchestration example that
may receive a new behaviour through the “EVOLVE”
connection and then apply dynamically this new be-
haviour.
...
behaviour(
parallel_split([

// An external evolution may be requested
receive(connection(’EVOLVE ’), values([

_evolved_behaviour]))
// some invocations of second layer patterns
...
sequence(if_then_else(_evolved_behaviour != NULL ,

// Evolution Required

ICEIS 2008 - International Conference on Enterprise Information Systems

80



apply(_evolved_behaviour)
// NO Evolution Required
if_then_else( // a test ,

// the orchestration goes on without
modification

...
terminate))])])),

...

The π-Diapason expression of the behaviour that
is containing modifications (for example new orches-
tration process, adding, removing services and/or op-
erations) is dynamically received and applied (see the
bottom part of the figure 2). It is up to the user to
express and on the fly provide to the π-Diapason vir-
tual machine, the definition of such behaviour. This
evolution mechanism at π-Diapason code level deals
with unpredicatble situations that may occur at run-
time, without having to suspend or to stop the execu-
tion.

4 CONCLUSIONS

π-Diapason is a formal and layered language for ex-
pressing processes at the second layer level by the
way of patterns (strongly related to business pro-
cesses/workflows); the third layer offers a high level
language that allows the user to formalize evolvable
information system service-based architectures (i.e.
service orchestration) without being in touch with π-
calculus. Such approach aims at providing means for
supporting agile business processes and flexible and
open information systems service-based architectures
through service orchestration: services orchestration
may be internally modified by receiving a new be-
haviour and the current execution may be deeply and
consistently modified. Our approach is non-intrusive
as the service orchestration is encapsulated in the de-
ployed web service that is the services choreographer
without to modify any other part of the information
system architecture.

ACKNOWLEDGEMENTS

This work is partially funded by the french ANR JC05
42872 COOK Project.

REFERENCES

Chirichiello, A. and Salaün, G. (2005). Encoding abstract
descriptions into executable web services: Towards a
formal development negotiation among web services
using lotos/cadp. In IEEE/WIC/ACM International
Conference on Web Intelligence (WI 2005).

Fitzerald, B. and Olsson, C., editors (2006). The Soft-
ware and Services Challenge. EY 7th Framework Pro-
gramme, Contribution to the preparation of the Tech-
nology Pillar on ”Software, Grids, Security and De-
pendability”.

Foster, H., Uchitel, S., Magee, J., and Kramer, J. (2006).
Ltsa-ws: A tool for model-based verification of web
service compositions and choreography. In IEEE
International Conference on Software Engineering
(ICSE 2006).

Fu, X., Bultan, T., and Su, J. (2004). Analysis of interacting
bpel web services. In Press, A., editor, Proceedings
of the 13th International World Wide Web Conference
(WWW’04), USA.

Hoare, C. (1985). Communicating Sequential Processes.
Prentice Hall International Series in Computer Sci-
ence.

Milner, R. (1989). Communication and Concurrency.
Prentice-Hall.

Milner, R. (1999). Communicating and Mobile Systems:
The π-calculus. Cambridge University Press.

Papazoglou, M. P., Traverso, P., Dustdar, S., Leymann,
F., and Krämer, B. J. (2006). Service-oriented
computing: A research roadmap. In Cubera,
F., Krämer, B. J., and Papazoglou, M. P., edi-
tors, Service Oriented Computing (SOC), number
05462 in Dagstuhl Seminar Proceedings. Interna-
tionales Begegnungs- und Forschungszentrum fuer
Informatik (IBFI), Schloss Dagstuhl, Germany.
http://drops.dagstuhl.de/opus/volltexte/2006/524
[date of citation: 2006-01-01].

Peltz, C. (2003). Web services orchestration: A review of
emerging technologies, tools, and standards. Techni-
cal report, HP.

Pourraz, F. and Verjus, H. (2007). π-diapason: A π-
calculus based formal language for expressing evolv-
able web services orchestrations. Research Report
LISTIC 07/06, University of Savoie - LISTIC.

Ravn, A. P., Owe, O., Giambiagi, P., and Schneider, G.
(2006). Language-based support for service oriented
architectures: Future directions. In Proceedings of 1st
International Conference on Software and Data Tech-
nologies (ICSOFT 2006), page 6, Setúbal, Portugal.

Sagonas, K., Swift, T., Warren, D. S., Freire, J., Rao, P.,
Cui, B., Johnson, E., de Castro, L., Marques, R. F.,
Dawson, S., and Kifer, M. (2006). The xsb system
version 3.0 volume 1: Programmer’s manual. Techni-
cal report, XSB consortium.

Salaün, G., Ferrara, A., and Chirichiello, A. (2004). Ne-
gotiation among web services using lotos/cadp. In
Springer, editor, Proceedings of the European Con-
ference On Web Services (ECOWS’04), volume 3250,
pages 198–212, Erfurt, Germany.

Solanki, M., Cau, A., and Zedan, H. (2006). Asdl: A
wide spectrum language for designing web services.
In 15th International World Wide Web Conference
(WWW2006).

van der Aalst, W. H. M., ter Hofstede, A. H. M., Kie-
puszewski, B., and Barros, A. P. (2003). Workflow
patterns. Distributed and Parallel Databases, 14(3).

DIAPASON: A FORMAL APPROACH FOR SUPPORTING AGILE AND EVOLVABLE INFORMATION SYSTEM
SERVICE-BASED ARCHITECTURES

81


