
SQS: A SECURE XML QUERYING SYSTEM

Wei Li and Cindy Chen
Department of Computer Science, University of Massachusetts Lowell, One University Ave, Lowell, MA, U.S.A.

Keywords: XML, access control, cache, query.

Abstract: Contemporary XML database querying systems have to deal with a rapidly growing amount of data and
a large number of users. As a consequence, if access control is used to protect sensitive XML data at a
fine-grained level, it is inefficient when it comes to query evaluation, since it is difficult to enforce access
control on each node in an XML document when the user’s view needs to be computed. We design and
develop a secure XML querying system, namely SQS, where caching is used to store query results and security
information. Depending on whether there is a cache hit, user queries are rewritten into secure system queries
that are executed either on the cached query results or on the original XML document. We propose a new
cache replacement policy LSL, which updates the cache based on the security level of each entry. We also
demonstrate the performance of the system.

1 INTRODUCTION

XML has been widely used for data sharing and ex-
change over the internet. As a consequence, XML
data security has become an important concern. In
general, there are three major issues of data security:
authentication, authorization and access control. For
access control, there are two major approaches: dis-
cretionary access control and mandatory access con-
trol. Under discretionary access control policy, a user
may “grant” read or modify privilege to another user;
or “revoke” another user’s privilege. The mandatory
access control mechanism uses system wide policies,
and thus cannot be changed by any user.

Since native XML data do not have a normalized
structure, unlike retrieving relational data and pub-
lishing them on the web, querying XML databases is
intrinsically complicated. Despite many efforts by re-
searchers, it remains a question how to evaluate XML
queries efficiently while enforcing access control. We
describe and implement a secure XML querying sys-
tem called SQS. The system uses a cache to improve
query execution. Unlike the traditional caching pol-
icy that caches only the query results, the SQS sys-
tem also caches the security information. To the best
of our knowledge, the SQS system is the first XML
querying system that uses caching for security in-
formation. When a query Q is executed, the cache
is looked up first to check whether there are cached
query results that answer Q, while the system’s ac-
cess control rules are also complied with. If a cache
hit occurs, a composing query C is computed and ap-
plied to the cached query results to render the result
for Q. Otherwise, Q is rewritten into a secure query

Q′ and evaluated over the original XML document.

2 RELATED WORK

A number of XML access control models have been
proposed. Based on the components of XML doc-
uments, Bertino et al. (Bertino et al., 2000) sug-
gested using different protection object granularities
such as document/DTD, set of documents, attribute,
(sub)element and link. Damiani et al. (Damiani et al.,
2002) defined authorization strength in their access
control model. If there is a conflict between the
authorizations specified in an XML document and
those specified in its corresponding schema, those
with a stronger authorization strength will have a
higher priority so to override the others. In Gabil-
lon’s model (Gabillon et al., 2002), access control list
is used to specify authorization. However, since it is
associated with each node, this method suffers when
dealing with large XML documents.

Researchers have developed many techniques for
XML access control. In (Cho et al., 2002), Cho et al.
proposed a method to rewrite a user query with spec-
ified authorizations into an authorized query, there-
fore avoid unnecessary authorization check-ups. In
(Yu et al., 2002), Yu et al. introduced a method called
CAM to enforce XML access control. The compres-
sion by CAM is achieved by taking advantage of the
tree structure of XML database and grouping together
the nodes that have similar accessibility, on a per-user
basis. In (Fan et al., 2004), Fan et al. developed
a view-based XML security model. Access specifi-
cations are enforced during the process of deriving

413
Li W. and Chen C. (2008).
SQS: A SECURE XML QUERYING SYSTEM.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 413-416
DOI: 10.5220/0001677304130416
Copyright c© SciTePress

the security view, where a security view is based on
the user view DTD and a function defined via XPath
queries. In (Mandhani and Suciu, 2005), Mandhani
and Suciu proposed a novel technique to cache XPath
views for XML. An algorithm was designed to deter-
mine whether a view can answer a new query. When
it does, a composing query will be computed and ap-
plied to the result of the view to answer the new query.

3 SYSTEM ARCHITECTURE

The SQS system uses a multi-level access control
model. The security levels are specified using non-
negative integers. The access control rule is simple,
yet robust, which requires that the security level of the
query should be no less than that of the data in order
to be granted access. The access control specifications
are defined at the document level. In the XML docu-
ments, attribute SecurityLevel is added to each el-
ement to indicate its security level. In an XML tree,
the security level is only allowed to increase mono-
tonically from the root to a leaf, which means that no
element has a higher security level than any of its de-
scendants. The system requires that the security level
of each node should be annotated. Although this will
bring the needs for additional space and extra work by
the document owner, it would be acceptable if secure
query evaluations can be improved.

We choose to use XPath query language to navi-
gate down the XML tree and retrieve data. The system
recognizes the XPath queries defined by the following
grammar:

p ::= e | p/ p | p// p | p [q]∗ (1)

e is an element name, and predicate q can be equali-
ties, comparisons, or paths.

schema

...

data

query engine

query shredder cache

query

result

Figure 1: The SQS system architecture.

Figure 1 illustrates the architecture of the system. At
first, a new query Q is parsed by the query shredder.
Then, the cache will be looked up to check whether
there is a cached view V that answers the query. If
a cache hit, a composing query C is computed based
on Q and V, then C is evaluated on the result of V by
the query engine; if a cache miss, Q is rewritten into
a secure query Q′. Then Q′ is sent to the query engine
and evaluated on the XML document.

4 METHODS

4.1 Query Rewriting

For a non-secure XPath query Q issued by a user at se-
curity level n, we rewrite it into a secure one by adding
a predicate [@SecurityLevel <= n] to each node in
Q. However, since in our access control model, the
security level increases monotonically along a path,
we may only need to add the above predicate to each
node appearing after the last axis in the XPath query.

In the system, if the original user query cannot be
answered using the cached views, it will be rewritten
as above and sent to the query engine; if a cached view
can answer the query, the composing query is then
rewritten and evaluated on the cached query result.

4.2 Cache Structure

In the system, a cache is used to store materialized
views and their security information. The cache is
maintained using RDBMS. We selectively adopt the
cache tables in (Mandhani and Suciu, 2005). We also
add columns to indicate query security level, result in-
formation, as well as auxiliary query information that
is used for cache replacement. Therefore, the cache of
the SQS system consists of the following two tables:

• View(viewID, prefix, predicate, all-predicates,
comparison-tags, query-security-level, result-
flag, usage-count, timestamp)

• XMLData(viewID, data)

The columns viewID, prefix, predicate, all-predicates,
comparison-tags provide the same information as in
(Mandhani and Suciu, 2005). Query-security-level
stores an integer which is the security level of the
query issuer. Result-flag is TRUE or FALSE, which
is an indicator of whether there is non-empty result
associated with the view. Usage-count records the
number of times that this view has been used to an-
swer new queries. Timestamp indicates the time when
the view is last used.

4.3 Cache Lookup

To process a query, we need to find a view in the
cache that not only answers the query, but also com-
plies with the access control rules. Note that there
might be a few views in the cache that satisfy the two
constraints. To select the best cached view to answer
query Q at security level S, we develop the following
algorithm based on (Mandhani and Suciu, 2005):

ICEIS 2008 - International Conference on Enterprise Information Systems

414

cache-lookup(Q, S)
for k = n, ...,1

EXEC SQL
SELECT View.*
FROM View
WHERE View.prefix = Prefix(Q, k)
AND (View.predicate = null

OR
View.predicate in ConPreds(Q, k))

AND View.query-security-level >= S
ORDER BY View.query-security-level ASC

examine the returned views in its order;
if some view answers Q, return it and exit;

return null

Prefix(Q, k) is the query left after removing from Q
the predicates of the kth axis node and all the axis
nodes after. ConPreds(Q, k) is the concatenation of
all the normalized trees that can map to one of the
predicates of the kth axis node of Q.

In our system, it implies that if user security level
S1 ≥ user security level S2, then the result of execut-
ing the same query at S1 will contain all that at S2.
Thus, the predicate View.query-security-level >= S
filters out those views that would not answer Q even
though by their semantics they could. The returned
views are also sorted since the best view that answers
Q is the one whose query-security-level is greater than
that of Q and is also the closest to that of Q.

4.4 Cache Warmup

In our system, we do not use any particular warmup
policy to populate the cache. The system automati-
cally inserts the newly processed query with its result
into the cache until the cache’s upper limit is reached.

4.5 Cache Update

Insertion happens when a query is processed and
there is still room in the cache. The query result
will be inserted into table XMLData and the system
will automatically assign a unique key for the field
viewID. This key is also returned and used in table
View. The fields prefix, predicate, all-predicates and
comparison-tags in table View are computed accord-
ing to (Mandhani and Suciu, 2005). Query-security-
level will be filled with the security level value of the
query issuer. Result-flag will be TRUE if the query re-
sult is non-empty or FALSE otherwise. Usage-count
is set to “1”. Finally, timestamp is assigned the cur-
rent system time.

Practically the cache has limited storage. When it
is full, it has to eject a certain entry to make room. Our
system supports three cache replacement policies:

• LFU (Least Frequently Used):
The view that has the smallest usage-count will be
ejected from the cache. In case there is a tie, the
system will randomly choose one view to discard.

• LRU (Least Recently Used):
The system selects from the cached views the one
that is least recently used to eject. The auxiliary
column timestamp serves here to indicate which
view has the oldest timestamp value.

• LSL (Lowest Security Level):
The view that has the lowest security level value
will be chosen to eject.

Unlike LFU and LRU, LSL is special for our system.
Intuitively, the view at a high query security level may
potentially be able to answer many queries that have a
lower security level, as long as semantically this view
answers those queries.

Besides insertion and replacement, update hap-
pens to the view chosen to answer the new query. It
includes increasing the usage-count field by “1” and
assigning timestamp the newest system time value.

5 EXPERIMENTS

5.1 Experimental Setup

This section assesses the performance of the SQS sys-
tem. The system is implemented in Java. All exper-
iments are performed on a 2.80GHz Intel Pentium
IV machine with 512 MB of RAM running Linux.
All experimental XML documents are generated us-
ing XMark. XPath queries are also generated based
on the DTD of the documents. The cache of the SQS
is maintained by Apache Derby DB. Galax XQuery
processor is used to process the XPath queries.

5.2 Results and Analysis

Effect of Cache Size on Cache Hit Rate
As shown in Figure 2, when there are relatively fewer
cache entries, LSL gives the best cache hit rate, while
LFU the worst. As the cache size increases, the cache
hit rate increases as well, but the pace of the increase
is getting slower and slower. When the cache size is
very large, all three replacement policies have virtu-
ally the same cache hit rate. Further increase of the
cache size becomes undesirable.

The reason why LSL gives a better cache hit
rate than the other two is because the views with
higher query-security-level tend to be more general
thus “better” than those with lower query-security-
level. The more “good” views in the cache, the higher

SQS - A SECURE XML QUERYING SYSTEM

415

the cache hit rate. Since LSL can select those views
with higher query-security-level to keep, it will in-
crease the chance of a cache hit.

40%

50%

60%

70%

80%

90%

0 1000 2000 3000 4000 5000

Number of records in cache

C
ac

he
 h

it
ra

te

LFU

LRU

LSL

Figure 2: Cache size vs. cache hit rate.

40%

50%

60%

70%

80%

90%

0 10000 20000 30000 40000 50000 60000
Number of queries

C
ac

he
 h

it
ra

te

LFU

LRU

LSL

Figure 3: Number of queries vs. cache hit rate.

Effect of Number of Queries on Cache Hit Rate

As in Figure 3, the cache hit rate does increase as the
number of queries processed increases. This is due to
the reason that repeated query evaluation and cache
update statistically select those “bad” views to eject
and leave the cache with more “good” views. As the
number of “good” views becomes larger and larger,
the cache hit rate increases. Among the three cache
replacement policies, LSL gives the highest cache hit
rate while LFU the worst.

Effect of XML File Size on Average Query Process-
ing Time

For comparison, the same query file is also processed
under similar conditions but without using the cache.
Figure 4 shows an obvious fact that as the XML file
size increases, the curve without the cache increases
at a much faster pace than those with the cache. The
separation between the one without the cache and
those with the cache is expected to be much greater
as the XML file size gets larger. The time saving ra-
tio is about 15% and 25% when the document size is
around 25 MB and 30 MB, respectively.

Note that when the XML file size is small, the av-
erage query processing time is even shorter without
the cache. This is because processing a query using
then cache introduces the overheads of cache lookup
and cache update. When the XML file is small, pro-
cessing queries without the cache is quick enough to
overcome the overheads caused by using the cache, so
it takes shorter time.

0

500

1000

1500

0 5000 10000 15000 20000 25000 30000

XML file size (KB)

A
ve

ra
ge

 q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(m

s)

LFU

LRU

LSL

W/O Cache

Figure 4: XML file size vs. average query processing time.

6 CONCLUSIONS

We designed and developed the SQS system, where
the cache stores both query results and query secu-
rity information. Its content can be efficiently looked
up and repeatedly used to answer new queries. We
discussed the factors affecting the cache hit rate and
the average query processing time. Our study showed
that LSL is currently the best cache replacement pol-
icy, and the cache can significantly improve the sys-
tem performance on secure query evaluation.

REFERENCES

Bertino, E., Castano, S., Ferrari, E., and Mesiti, M. (2000).
Specifying and enforcing access control policies for
XML document sources. World Wide Web Journal.

Cho, S., Amer-Yahia, S., Lakshmanan, L., and Srivastava,
D. (2002). Optimizing the secure evaluation of twig
queries. In Proceedings of the 28th VLDB Conference.

Damiani, E., di Vimercati, S. D. C., Paraboschi, S., and
Samarati, P. (2002). A fine-grained access control sys-
tem for XML documents. ACM TISSEC.

Fan, W., Chan, C., and Garofalakis, M. (2004). Secure
XML quering with security views. In Proceedings of
ACM SIGMOD.

Gabillon, A., Munier, M., Bascou, J. J., Gallon, L., and
Bruno, E. (2002). An access control model for tree
data structures. In 5th Information Security Confer-
ence.

Mandhani, B. and Suciu, D. (2005). Query caching and
view selection for XML databases. In Proceedings of
the 31th VLDB Conference.

Yu, T., Srivastava, D., Lakshmanan, L., and Jagadish, H.
(2002). Compressed accessibility map: Efficient ac-
cess control for XML. In Proceedings of the 28th
VLDB Conference.

ICEIS 2008 - International Conference on Enterprise Information Systems

416

