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Abstract: The integration of heterogeneous systems is still one of the main challenges in the area of data management.
Its importance is based on the trend towards heterogeneous system environments, where the different levels
of integration approaches result in a large number of different integration systems. Due to these proprietary
solutions and the lack of a standard for data-intensive integration processes, the model-driven development—
following the paradigm of the Model-Driven Architecture (MDA)—is advantageous. This paper contributes to
the model-driven development of complex and data-intensive integration processes. In addition, we illustrate
optimization possibilities offered by this model-driven approach and discuss first evaluation results.

1 INTRODUCTION

Based on the trend towards heterogeneous and dis-
tributed infrastructures, integration technology is in-
creasingly used in order to exchange data between ap-
plications and systems as well as to provide uniform
access to multiple data sources. Integration concepts
can be classified into the following layers (Dessloch
et al., 2003): information integration (data integration
and function integration), application integration, pro-
cess integration and GUI integration. These different
fields of integration resulted in the existence of nu-
merous different proprietary integration systems, like
federated DBMS, subscription systems, Enterprise
Application Integration (EAI) servers, Enterprise In-
formation Integration (EII) frameworks and Extrac-
tion Transformation Loading (ETL) tools as well as
workflow management systems.

Due to the large number of different integration
systems with overlapping functionalities and the lack
of a standard for integration tasks, major problems
arise. In general, strong efforts are necessary to set up
concrete integration scenarios. This obstacle of high
development effort is accompanied by the need for
well-educated administration teams to handle the spe-
cific integration systems. Obviously, a low degree of

portability is reached for integration processes. This
is a minor problem in static system environments.
However, in real-world scenarios which change dy-
namically, this is unsuitable due to the extensive ef-
forts required for migration. Further, there is the prob-
lem of efficiency. In many cases, the performance of
complete business processes depends on the perfor-
mance of the integration system.

Therefore, we focus on the model-driven gener-
ation and optimization of complex integration pro-
cesses using MDA methodologies. Here, integration
processes can be modeled in a platform-independent
way and platform-specific integration tasks are gen-
erated automatically. During this generation, opti-
mization techniques can be applied. Thus, the prob-
lems of high development effort and low portability
can be eliminated using the model-driven generation
approach, while the problem of efficiency is tackled
with numerous optimization techniques.

To summarize, our contribution comprises the
discussion of the model-driven generation (Section
3) and optimization (Section 4) of integration pro-
cesses. Section 5 explains implementation details
of the GCIP Framework (the realization of our ap-
proach) and provides the experimental evaluation. Fi-
nally, we conclude the paper in Section 6.
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2 RELATED WORK

Although there is a large body of work on MDA tech-
niques and tools in general, this is not true for the
model-driven generation and optimization of integra-
tion processes. Hence, we analyze related work from
two perspectives.

Model-Driven Architecture (MDA): MDA is
a paradigm for the model-driven development of
software and hardware. The core approach leads
from a computer-independent model (CIM) over the
platform-independent model (PIM) to the platform-
specific models (PSM). These PSMs, which are cre-
ated in dependence on the platform models (PM),
are used as input for template-based code genera-
tion. Here, standardized meta models like UML
and model-model transformation techniques (Königs,
2005) are used. In the context of database applica-
tions, MDA is widely used but open research chal-
lenges still exist. Those are partly addressed in the
GignoMDA project (Habich et al., 2006).

Model-Driven Integration Processes: In con-
trast to this, there are only few contributions on the
platform-independent integration process generation.
The RADES approach (Dorda et al., 2007) gives an
abstract view on EAI solutions using technology-
independent and multi-vendor-capable model-driven
methodologies. However, this is an EAI platform-
specific approach. Further platform-specific work
on ETL process modeling (Trujillo and Luján-Mora,
2003; Vassiliadis et al., 2002) and ETL model trans-
formation (Hahn et al., 2000; Mazón et al., 2005;
Simitsis, 2005) exists. We are not aware of any so-
lutions which allow the model-driven generation of
integration processes. In the context of EII frame-
works (data integration), sophisticated techniques like
query scrambling (Urhan et al., 1998), bushy tree enu-
meration, dynamic rescheduling (Urhan and Franklin,
2001), plan partitioning (Kabra and DeWitt, 1998)
and adaptive inter- as well as intra-query optimiza-
tion techniques (Bruno and Chaudhuri, 2002; Still-
ger et al., 2001) has been developed. However, there
is very little research on the optimization of inte-
gration processes. Preliminary results are shown on
the optimization of ETL processes (Simitsis et al.,
2005), the self-optimization of message transforma-
tion processes (Böhm et al., 2007), the optimization
of data-intensive decision flows (Hull et al., 2000),
the query optimization over Web services (Srivastava
et al., 2006), and the rule-based rewriting of SQL ac-
tivities in business processes (Vrhovnik et al., 2007).
In fact, these techniques are not sufficient for the log-
ical platform-independent optimization.
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Figure 1: Main Generation Approach.

3 GENERATION ASPECTS

In this section, we introduce our main approach—
shown in Figure 1—for the model-driven generation
of integration processes (Böhm et al., 2008c) in short.

Here, integration processes are specified with a
platform-independent model (PIM) in order to de-
scribe the overall process flow. Further, we base
our development on one abstract platform-specific
model (A-PSM) using the Message Transformation
Model (MTM) (Böhm et al., 2007). Based on this
A-PSM, several platform-specific models (PSM)—
specific to an integration system type—can be gen-
erated using the specified platform models (PM). In
the next step, the concrete declarative process descrip-
tions (DPD)—specific to an integration system—can
be created. Therefore, a number of specific dialects
could be applied to each single PSM.

Platform-Independent Model (PIM): The PIM
is derived from the computer-independent model
(CIM), which is represented by textual specifications.
Further, it is the first formal specification of the in-
tegration process and thus the starting point for the
automated generation. The platform-independence
(no technology choice) of the model is reached by
restricting the modeling to graphical notations like
BPMN and UML activity diagrams. The procedure
for PIM process modeling (determination of termina-
tors, determination of interactions with terminators,
control-flow modeling, data-flow modeling, detailed
model parameterization) is equal to the procedure
of structured analysis and design (SAD). The single
steps are used in order to allow for different degrees
of abstraction during modeling time. Be aware that,
potentially, different persons might model the differ-
ent degrees of abstraction.

Abstract Platform-Specific Model (A-PSM): In
contrast to the original MDA approach, we use an

ICEIS 2008 - International Conference on Enterprise Information Systems

132



abstract platform-specific model (A-PSM) between
the PIMs and the PSMs. This is reasoned by four
facts. First, it reduces the transformation complex-
ity between n PIMs and m PSMs from n ·m to n+m.
Second, it separates the most general PIM represen-
tations from the context-aware PSMs of integration
processes, still independent of any integration system.
Third, it offers the possibility for applying context-
aware optimization techniques in a unique (normal-
ized) manner. And fourth, it increases the simplic-
ity of model transformations. Basically, the Mes-
sage Transformation Model (MTM)—introduced in
(Böhm et al., 2007)—is used as A-PSM. The MTM
is a conceptual model for data-intensive integration
processes and is separated into a conceptual message
model (hierarchical data model) and a conceptual pro-
cess model (directed graph and specific activities).
Two different event types—initiating such integration
processes—have to be distinguished. First, there is
the message stream, where processes are initiated by
incoming messages. Such a stream is an event stream.
Here, processes have a Receive operator and can re-
ply to the invoking client. Second, there are external
events and scheduled time events, where processes are
initiated in dependence on a time-based schedule or
by external schedulers. These processes do not have a
Receive operator and cannot reply synchronously to
an invoking client. The external XML representation
of the PIM can be transformed into the defined XML
representation of the A-PSM. During this transforma-
tion, several structural changes are applied to the in-
tegration processes.

Platform-Specific Model (PSM): From the
unique A-PSM, multiple platform-specific models
(PSM), including PSM for FDBMS, ETL tools and
EAI servers, can be generated. Therefore, the plat-
form models (PM) are used. Here, we only pick the
PSM for federated DBMS. In contrast to the MTM,
the PSM for federated DBMS is rather hierarchically
structured and not a graph-based model. Further, the
two process-initiating event types are expressed with
two different root components. The Trigger (bound
to a queuing table) represents the event type message
stream and the Procedure represents the event type
external events and scheduled time events.

Declarative Process Descriptions: In contrast to
the MDA paradigm, we name the lowest generation
level the Declarative Process Description (DPD) in
order to distinguish (1) the integration process spec-
ifications (DPD) deployed in the integration system
and (2) the generated integration code internally pro-
duced by the integration system. Those are usually
specified in a declarative way. In case of FDBMS, a
DPD (represented by DDL statements) is generated.

4 OPTIMIZATION ASPECTS

The model-driven generation opens several optimiza-
tion opportunities on different levels of abstraction.
We distinguish the Intra-System Process Optimization
(rewriting of process plans for execution time mini-
mization) and the Inter-System Process Optimization
(decision on the most efficient integration system).

4.1 Optimization-Influencing Factors

Both optimization types are influenced by several fac-
tors. We classify these factors into the three cate-
gories: optimization aim, execution knowledge, and
optimization technique (see Figure 2). All of these
have an impact on both intra-system as well as inter-
system process optimization.

The optimization aim distinguishes between exe-
cution time minimization and throughput maximiza-
tion. Here, the former requires a minimal latency,
which is mainly used in combination with the syn-
chronous execution model. For the latter, latency is
acceptable but the number of executed processes per
time period is maximized. There, multi-process opti-
mization techniques (e.g., one external system lookup
for multiple process instances) are used. Further-
more, the execution knowledge describes whether or
not workload statistics exist or that ad-hoc estima-
tion (no statistics) has to be applied. The former
comprise average execution costs for process types
and single process steps as well as probabilities for
the execution of alternative process paths, statistics
about average data sizes, selectivities and cardinal-
ity information but also network and external system
delays. Finally, the factor optimization technique ad-
dresses realization aspects, while the other factors fo-
cus on precondition aspects. Here, we distinguish be-
tween cost-based plan comparison and the rule-based
plan rewriting. The former creates a set of seman-
tically equal process plans and evaluates those with
empirical cost functions in dependence on the given
workload characteristics. The latter applies algebraic
rewriting rules based on pattern matching algorithms.

Figure 2: Influencing Factor Dimensions.
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Figure 3: Intra-System Process Optimization Techniques.

4.2 Intra-System Process Optimization

In the context of Intra-System Process Optimization,
several process rewriting and re-parameterization
techniques—as shown in Figure 3 (technique
classification)—could be applied on different levels
of abstraction. Here, the abstraction levels (1a)
Logical Process A-PSM Optimization, (1b) Logical
Process PSM Optimization, (1c) Logical Process
DPD Optimization, and (2a) Physical Process Code
Optimization have to be distinguished, while opti-
mization on PIM level is not suitable. We illustrate
examples for each of these abstraction levels.

Logical A-PSM Optimization: Integration-
system-specific hints and techniques as well as a con-
crete cost function could not be used due to missing
knowledge of the target integration system. How-
ever, on this level, techniques like WC2: Rewriting
Sequences to Parallel Flows can be applied with re-
spect to existing data dependencies.

Logical PSM Optimization: Here, integration-
system-type-related optimizations can be used. For
example, the technique WD7: Materialization Point
Insertion can be applied in order to optimize a fed-
erated DBMS PSM. This technique is used for dis-
tributed sub-queries, initially executed n times in or-
der to share and execute them only once (reusing
the materialized result n times). This also ensures a
scalable processing. A second example is the tech-
nique WD3: Execution Pushdown to External Sys-
tems, where the execution can be delegated to external
systems. This reduces the amount of transfered data
and also prevents local processing steps.

Logical DPD Optimization: Further, vendor-
specific tuning mechanism specifications can be used.
As an example for that, we want to refer to WM1: Ac-
cess to Extracted Single Values of document-oriented
integration processes, where message indexing is
used for single-value extraction.

Physical DPD Optimization: On this level,
the most implementation-specific optimization tech-
niques can be applied. These are realized within con-

crete integration systems and are explicitly not the
subject of our model-driven approach. Examples for
that are the techniques RC3: Local Subprocess In-
vocation Elimination (inline compilation of subpro-
cesses) and RC4: Static Node Compilation (reuse of
operators across multiple process instances). From
our perspective, these optimization techniques could
be used by specifying physical hints.

The main criticism of the Intra-System Process
Optimization might be that optimizations on less ab-
stract levels are more powerful. There are four ad-
vantages of the model-driven process optimization.
First, this central optimization and distributed deploy-
ment reduces the development effort and further re-
duces the optimization time. Second, the abstract in-
tegration process specifications allow for an overall
view of applicable optimization strategies. Third, the
logical optimization achieves the independence from
concrete integration systems. Fourth, the logical op-
timization allows to take physical optimizations into
account during Inter-System Process Optimization.

4.3 Inter-System Process Optimization

The decision on the most efficient target integration
system focuses on the search for the integration sys-
tem with the maximal performance for a given pro-
cess plan. Our solution consists of two steps. In
the first step, functional properties (like the need for
transactional behavior) are derived from the process
plan. All integration systems are then evaluated to
see whether or not they support these functional prop-
erties. In the second step, a performance compari-
son of the applicable integration systems is executed.
For that, we transform the informal optimization aim
into the mathematical model of DEA (Data Envelop-
ment Analysis) (Seol et al., 2007), which is an op-
erations research technique for analyzing the relative
efficiency of two units. It is based on the idea to get
the maximal output by providing the minimal input.

max
(

∑
m
o=1 (w1o · xo)

∑
n
i=1 (w2i · yi)

)
with ∑w1o = ∑w2i = 1

This mathematical model maximizes the ratio of
weighted output factors w1o · xo and weighted input
factors w1i · yi. From this general DEA model, the
GCIP decision model is derived.

max
(
−w11 ·AV G(NC (px))+w12 ·AV G(NT (px))

CFistype (px)

)
There, the output factors are chosen in accordance to
the optimization-influencing factors. Thus, the out-
put factors normalized throughput NT (px) and nor-
malized processing time NC(px) are used. These fac-
tors are complementary, expressed by different al-
gebraic signs. Further, there is only the input fac-
tor CFistype(px) which represents the cost function
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Figure 4: Plots of Different Integration Systems and Comparison of Unoptimized and Optimized Process Plans.

of the specific integration system type. Each cost
function has platform-specific parameters, includ-
ing main-memory constraints, target-system types,
target-system interactions, dataset sizes, the degree of
parallelism as well as CPU and disk usage. When
changing the weights w11 and w12, the mentioned
optimization aim could be specified. Thus, with a
weight w11 lower than 0.5, the decision is made in an
execution-time-oriented manner; otherwise, the opti-
mization is based on the throughput of the system.

Aside from the optimization aim, the decision fur-
ther depends on the kind of optimization model. Here,
an input-oriented model (minimization of input) as
well as an output-oriented model (maximization of
output) may be applied. Although the inter-system
process optimization has huge potential, it includes
several problems. Thus, with the influence of dataset
sizes in mind, it is obvious that the decision is influ-
enced by workload statistics like dataset sizes.

5 EVALUATION EXPERIMENTS

The generation strategies as well as the performance
of the different integration systems were evaluated in
several experiments. We focus on the performance
comparison of integration systems using the intro-
duced example process type P13 from the DIPBench
(Böhm et al., 2008a; Böhm et al., 2008b).

5.1 Framework Implementation Details

Our approach was implemented within the GCIP
Framework. There, we currently support the men-
tioned integration system types FDBMS, ETL tools
and EAI servers. The macro-architecture of the
framework consists of a swing-based GUI, some core
components, a persistence layer as well as three main
subcomponents: the Transformer, the Dispatcher
and the Optimizer. First, the Transformer allows
for model-model as well as model-code transforma-
tions using defined model mappings and code tem-
plates. Second, the Dispatcher realizes the Inter-

System Process Optimization deciding on the opti-
mal integration system based on functional proper-
ties and platform-specific cost functions. Third, the
Optimizer subcomponent optimizes A-PSM models
and thus realizes the Intra-System Process Optimiza-
tion by rewriting process plans using rule-based and
workload-based optimization techniques; it can be in-
fluenced with hints.

5.2 Setup and Measurements

The process type P13 was used to generate the DPD
for the integration system types FDBMS, ETL tools,
EAI servers and a standalone mediator (generated
reference). The experimental setup comprises three
computer systems. On the first system (ES [Athlon64
1800+, 2GB RAM]), all external systems are located.
On the second system (IS [Athlon64 1800+, 2GB
RAM]), the integration system resides and the DIP-
Bench toolsuite is located on the third system (CS
[Dual Genuine Intel T2400, 1.5GB RAM]). We show
seven different experiments (Figure 4 a-c). In order
to show the datasize impact, we used different scale
factors, reaching from 0.1 to 0.7, where a scale fac-
tor of 1 implies 70,000 Order rows and 350,000 Or-
derline rows. The process type P13 was executed
100 times (with newly initialized external systems)
for each datasize configuration with the aim of statis-
tical correctness. As performance result metrics, we
used the average of the normalized costs.

5.3 Performance Result Discussion

The comparison of unoptimized process executions
on the different integration systems shows that the
FDBMS always outperforms all other integration sys-
tems. This is caused by the semantics of P13, where
only RDBMS are used as external system types. The
mediator (generated standalone JDBC mediator, only
used for comparison purposes) is always superior to
the EAI server because the latter serializes the incom-
ing tuples to XML, executes streaming transforma-
tions and deserializes the tuples, while the mediator
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was generated as tuple-based (in-memory) mediator
using plain JDBC. The EAI server shows a much bet-
ter scaling than the ETL tool, while the ETL tool has
a lower initial overhead. The resulting break-even
point may be reasoned by two facts. First, the EAI
server stores the temporary data in a coarse-grained
way (XML document), while the ETL tool uses a
fine-grained (tuple-based) temporary datastore. Sec-
ond, the overhead for XML serialization decreases
with increasing datasizes because it is executed asyn-
chronously while reading and writing data to/from the
external systems. In Figure 4b, there is the compari-
son between unoptimized and optimized (using mate-
rialization points) FDBMS DPD, which shows an in-
teresting scaling. In Figure 4c, the unoptimized EAI
server DPD is compared with optimized versions.

6 SUMMARY

The motivation behind this work and the enclosing
research project GCIP was the lack of model-driven
techniques for integration process generation. There
was also little work on process optimization using
rewriting and comparison techniques. Thus, our main
approach was the adaptation of MDA to the context
of integration processes and the application of opti-
mization techniques on different levels of abstraction.
To summarize the paper, we illustrated our approach
of generating platform-specific integration processes
for FDBMS, ETL tools and EAI servers. Further,
we classified the optimization techniques which could
be applied during model-driven process generation as
well as the optimization-influencing factors. Finally,
we described the framework implementation in short
and discussed example performance evaluations.
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