USING ASSOCIATION RULES TO LEARN CONCEPT RELATIONSHIPS IN ONTOLOGIES

Jon Atle Gulla, Terje Brasethvik, Gøran Sveia Kvarv

2008

Abstract

Ontology learning is the application of automatic tools to extract ontology concepts and relationships from domain text. Whereas ontology learning tools have been fairly successful in extracting concept candidates, it has proven difficult to detect relationships with the same level of accuracy. This paper discusses the use of association rules to extract relationships in the project management domain. We evaluate the results and compare them to another method based on tf.idf scores and cosine similarities. The findings confirm the usefulness of association rules, but also expose some interesting differences between association rules and cosine similarity methods in ontology relationship learning.

References

  1. Agrawal, R., Imielinski, T., & Swami, A. N. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 acm sigmod international conference on management of data.
  2. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proceedings of the 20th international conference on very large data bases (vlds'94).
  3. Cimiano, P., & Völker, J. (2005). Text2onto. In A. Montoyo, R. Muñoz & E. Métais (Eds.), Proceedings of the 10th international conference on applications of natural language to information systems (nldb'05) (pp. 227-238). Allicante: Springer.
  4. Cimiano, P., Völker, J., & Studer, R. (2006). Ontologies on demand? A description of the state-of-the-art, applications, challenges and trends for ontology learning from text. Information, Wissenschaft und Praxis, 57(6-7), 315-320.
  5. Cristiani, M., & Cuel, R. (2005). A survey on ontology creation methodologies: Idea Group Publishing.
  6. Delgado, M., Martín-Bautista, M. J., Sánchez, D., & Vila, M. A. (2002). Association rule extraction for text mining. In Flexible query answering systems: 5th international conference (fqas'02). Copenhagen.
  7. Fernandez, M., Goméz-Peréz, A., & Juristo, N. (1997). Methontology: From ontological art towards ontological engineering. In Proceedings of the aaai'97 spring symposium series on ontological engineering (pp. 33-40). Stanford.
  8. Gaizauskas, R., Rodgers, P., Cunningham, H., & KHumphreys, K. (1996). Gate user guide. Url: Http://gate.Ac.Uk/sale/tao/index.Html#x1-40001.2.
  9. Gulla, J. A., Borch, H. O., & Ingvaldsen, J. E. (2007). Ontology learning for search applications. In Proceedings of the 6th international conference on ontologies, databases and applications of semantics (odbase 2007). Vilamoura: Springer.
  10. Haddad, H., Chevallet, J., & Bruandet, M. (2000). Relations between terms discovered by association rules. In Proceedings of pkdd'2000 workshop on machine learning and textual information access. Lyon.
  11. Haase, P., & Völker, J. (2005). Ontology learning and reasoning - dealing with uncertainty and inconsistency. In P. C. G. da Costa, K. B. Laskey, K. J. Laskey & M. Pool (Eds.), Proceedings of the international semantic web conference. Workshop 3: Uncertainty reasoning for the semantic web (iswcursw'05) (pp. 45-55). Galway.
  12. Ingvaldsen, J. E., Gulla, J. A., Laegreid, T., & Sandal, P. C. (December 2006). Financial news mining: Monitoring continuous streams of text. In Proceedings of the 2006 ieee/wic/acm international conference on web intelligence (pp. 321-324). Hong Kong.
  13. Maedche, A., & Staab, S. (2000). Semi-automatic engineering of ontologies from text. In Proceedings of the 12th Internal Conference on Software and Knowledge Engineering. Chicago, USA. KSI.
  14. Navigli, R., & Velardi, P. (2004). Learning domain ontologies from document warehouses and dedicated web sites. Computational Linguistics, 30(2), 151-179.
  15. Nørvåg, K., Eriksen, T. Ø., & Skogstad, K.-I. (2006). Mining association rules in temporal document collections, Proceedings of the 16th International Symposium on Methodologies for Intelligent Systems (ISMIS'06). Bari.
  16. PMI. (2000). A guide to the project: Management body of knowledge (pmbok): Project Management Institute.
  17. Sabou, M., VWroe, C., Goble, C., & Stuckenschmidt, H. (2007). Learning domain ontologies for semantic web service descriptions. Accepted for publication in Journal of Web Semantics.
  18. Solskinnsbakk, G. (2007). Ontology-driven query reformulation in semantic search. Norwegian University of Science and Technology, Trondheim.
Download


Paper Citation


in Harvard Style

Atle Gulla J., Brasethvik T. and Sveia Kvarv G. (2008). USING ASSOCIATION RULES TO LEARN CONCEPT RELATIONSHIPS IN ONTOLOGIES . In Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 3: ICEIS, ISBN 978-989-8111-38-8, pages 58-65. DOI: 10.5220/0001686200580065


in Bibtex Style

@conference{iceis08,
author={Jon Atle Gulla and Terje Brasethvik and Gøran Sveia Kvarv},
title={USING ASSOCIATION RULES TO LEARN CONCEPT RELATIONSHIPS IN ONTOLOGIES},
booktitle={Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 3: ICEIS,},
year={2008},
pages={58-65},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001686200580065},
isbn={978-989-8111-38-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 3: ICEIS,
TI - USING ASSOCIATION RULES TO LEARN CONCEPT RELATIONSHIPS IN ONTOLOGIES
SN - 978-989-8111-38-8
AU - Atle Gulla J.
AU - Brasethvik T.
AU - Sveia Kvarv G.
PY - 2008
SP - 58
EP - 65
DO - 10.5220/0001686200580065