

REPRESENTATION AND REASONING MODELS
FOR C3 ARCHITECTURE DESCRIPTION LANGUAGE

Abdelkrim Amirat and Mourad Oussalah
Laboratoire LINA CNRS UMR 6241, Université de Nantes 2, Rue de la Houssinière

BP 92208, 44322 Nantes Cedex 03, France

Keywords: Model, Representation, Hierarchy, Connector, Architecture.

Abstract: Component-based development is a proven approach to manage the complexity of software and its need for
customization. At an architectural level, one describes the principal system components and their pathways
of interaction. So, Architecture is considered to be the driving aspect of the development process; it allows
specifying which aspects and models in each level needed according to the software architecture design.
Early Architecture description languages (ADLs), nearly exclusive, focus on structural abstraction hierarchy
ignoring behavioural description hierarchy, conceptual hierarchy, and metamodeling hierarchy. In this paper
we focus on those four hierarchies which represent views to appropriately “reason about” software
architectures described using our C3 metamodel which is a minimal and complete architecture description
language. In this paper we provide a set of mechanisms to deal with different levels of each hierarchy, also
we introduce our proper structural definition for connector’s elements deployed in C3 Architectures.

1 INTRODUCTION

Nowadays, there is a completely new approach to
building more reliable software systems which
consist to decompose large and complex systems
into smaller and well-defined units called software
components. A component-based application is a
collection of individual components, which are
interconnected via well-defined connectors between
their interfaces.

Component that have no externally observable
internal structure, while having real implementation
in certain programming language, are called
primitive components. Components containing
nested subcomponents, i.e. components with
observable internal structure, are called
configurations. So, components, connectors and
configurations commonly referred to as core
elements, are typically defined in an Architecture
Description Language (ADL) (Allen, 1997).

Software architecture researchers need
extensible, flexible architecture descriptions
languages and equally clear and flexible
mechanisms to manipulate these core elements at the
architecture level.

There is not today, nor has there ever been, a
clear consensus on a definition of software
architecture. Recently Medvidovic (Medvidovic,
2007) gives the following definition for software
architecture “A software system’s architecture is the
set of design decisions about the system”. So, if
those decisions are made incorrectly, they may cause
your project to be cancelled. However, these design
decisions encompass every aspect of the system
under development, including: design decisions
related to system structure, design decisions related
to behaviour also referred to as functional, design
decisions related to the system’s non functional
properties. Also, we can elicit other design decisions
related to the development process or the business
position (product-line).

The “first-generation” ADLs all shared certain
traits. They all modeled the structural and, with the
exception of Acme (Garlan, 2000), functional
characteristics of software systems. They invariably
took a single, limited perspective on software
architecture. In this paper we introduce further
perspectives which are complementary to the
structural one. The majority of ADLs proposes, like
reasoning model, only sub-typing as a mechanism
for specialization (e.g. Acme, C2). Otherwise, for
the rest of ADLs, they propose their own ad hoc

207
Amirat A. and Oussalah M. (2008).
REPRESENTATION AND REASONING MODELS FOR C3 ARCHITECTURE DESCRIPTION LANGUAGE.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 207-212
DOI: 10.5220/0001689702070212
Copyright c© SciTePress

mechanisms based on algorithms and methods
designed specially for them. Based on a bread
survey of architecture description notations and
approaches, we identified that ADLs capture aspects
of software design centred around a system’s
Component, connectors, and configurations. The
core elements of our model are basically defined
around these tree elements. So, from this we derive
the name of our model C3 for Component,
Connector, and Configuration. The rest of the paper
is organized as fellows. In section 2 presents our
research motivations. Section 3 describes the C3
metamodel. The last section presents a conclusion
about this work.

2 MOTIVATION

Our motivation in this work is to develop a generic
model for the description of software architectures
which must be minimal and complete. It is minimal
because we are only interested by the core concepts
in each ADL. And complete because with this
minimum of concepts the architect will be able to
describe any required structure he needs to realize
using those concepts and a set of predefined
mechanisms. However, describing only the
architecture structure is not sufficient to provide
correct and reliable software systems. In this paper
we are going to focus more on representation
architecture model and to reason about its elements
following four different types of hierarchies. Each of
those hierarchies provides a particular view on the
architecture. We expect from our approach to
provide more explicit and better clarified software
architecture. Mainly the approach is developed to:
 Make explicit the possible types of hierarchies
being used as support to reason about the
architecture, with the different possible levels in
each hierarchy.

 Show semantics conveyed by every type of
hierarchy by providing the necessary mechanisms
used to connect elements of in the same
hierarchical level and the mechanisms used to
connect elements of every level with the elements
of the adjacent levels.

 Allow introducing various mechanisms of
reasoning within the same architecture according
to the requirements of the system in a specific
application domain.

 Establish the position of existing mechanisms
developed for reasoning with regard to our
referential.

3 THE C3 METAMODEL

In order to have a complete C3 metamodel, we have
defined mainly two complementary models to
describe and reason about system’s architecture. We
use a representation model to describe architectures
based on C3 elements and we use a reasoning model
to understand and analyse the representation model.

3.1 Representation Model

The core elements of the C3 representation model
are components, connectors, and configurations,
each of these elements have an interface to interact
with its environment like depicted in Figure 1.

Configuration

+name: String

Component

+name: String

1

1..*

Connector

+name: String

1

0..*

Interface

1

1..*

Port Service

ProvidedPortRequiredPort ProvidedServiceRequiredService

Figure 1: Basic elements of C3 metamodel.

Components represent the primary computational
elements and data stores of a software system.
Intuitively, they correspond to the boxes in box-and-
line descriptions of software architecture. In C3,
each component can have one or more ports. Ports
are the interaction points between components and
their environments.

Connectors are very important entities that
unfortunately are not dealt with by all conventional
component-based models. In C3, connectors
represent interconnections among components to
support their interaction and they are defined
explicitly and considered as first class entities by
separating their interfaces from their imple-
mentation. Figure 2 illustrates our contribution at
this level which consists in enhancing the structure
of a connector by encapsulating the attachment links
inside its definition. So, the application builder will
have to spend no effort in connecting connectors
with their compatible components or configurations.
Consequently, the task of the developer consists
only to select the suitable type of connector which is
compatible with the types of components and/or

ICEIS 2008 - International Conference on Enterprise Information Systems

208

configurations which are expected to be connected
by it this last one (Amirat, 2007).

portRequis, portFourni, roleRequis , roleFourni

Connector (NewRPC)

Client (C) Server (S)RPC

Attachment New structure
of a connector

Old structure
of a connector

Legend:

P1 R1 P2R2

Figure 2: The new structure of a connector.

So, by encapsulating attachments links inside the
connector, we can give the following connector
definition.

Configuration. In C3 each component or connector
is perceived and handled from the outside as a
primitive element. But their inside can be real
primitive elements or composite with a
configuration encapsulating all the internal elements.
So, in C3 we define configurations as first-class
entities. They represent graphs of components and
connectors to describe how they are interconnected
to each other. A configuration may have an interface
specified by a set of ports and services. Each port is
perceived like a bridge between the internal
environment of the configuration and the external
one. So, the different elements of the architecture
are connected through their interfaces. Thus the
interface types of are checked if they are compatible
or not (interface matching). Consequently, the
consistency of elements assembly is controlled
syntactically.

3.2 Reasoning Model

In our approach we plan to analyze the software
architecture by using different hierarchy views
where each hierarchy is investigated at different
levels of representations. C3 reasoning model is
defined by four hierarchies. Each hierarchy
represents a specific view on the C3 representation
model different from the others.

Those four hierarchies are: 1- The structural
hierarchy used to explicit the different nested levels
of abstraction that the system’s architecture can

have. 2- The behavioural hierarchy to describe the
different levels of system’s behaviour hierarchy
generally represented by protocols. 3- The
conceptual hierarchy to provide the libraries of
element types corresponding to structural or
behavioural element at each level of the architecture
description. 4- The metamodeling hierarchy to locate
from where our metamodel is coming and what we
can do with it. Obviously those two sides will
belong to the pyramid of abstraction hierarchies
defined by Object Management Group (OMG,
2007).

3.2.1 Structural Hierarchy (SH)

Structural hierarchy has to provide the structure of
particular system architecture in terms of the
architectural elements. The majority of academic
ADLs like Aesop, MetaH, Rapide, SADL, and
others (Matevska-Mayer, 2004) or the industrial
ones like CCM, EJB or .Net (Pinto, 2005) allow
only a flat description of software architectures.
Using those ADLs architecture is described only in
terms of components connected by connectors
without any nested elements. This design choice was
made in order to simplify the structure and also by
lack of concepts and mechanisms that respectively
define and manipulate configurations of components
and connectors.

In our metamodel the structure of an architecture
is described using components, connectors, and
configurations, where configurations are composite
elements. Each element in this configuration can be
a primitive (with a basic behaviour scenario) or a
new configuration which contains another set of
components and connectors, which in their turn can
be primitive or composite material, and so on.

However, C3 allows the representation of
architecture with the necessary number of
abstraction levels (Ln, Ln-1… L0), where n depends
on the complexity of the system. Practically all
architectural solutions for domain problems have a
nested hierarchical nature. Thus, real software
architecture can be viewed as a graph where each
internal node of this graph represents a configuration
and each leaf-node represents a primitive component
arcs between nodes represent connectors.

As a simple illustrative example, Figure 3 depicts
the client-server (CS) architecture. We analyse this
example from the provided view of each type of
hierarchy introduced in this paper. In the following
figures we use numbers to represent architecture
elements.

Connector_NewRPC (C.P1 , S.P2) {
 Roles R1, R2;
 Services sendRequest , receiveRequest;
 Properties {List of properties}
 Constraints maxClient = 3 ;
 Glue R1=R2 // simple mapping function
 Connexions {RPC.R1 to C.P1, RPC.R2 to S. P2} }

REPRESENTATION AND REASONING MODELS FOR C3 ARCHITECTURE DESCRIPTION LANGUAGE

209

Client Server
RPC

Coordinator

Security
Manager

DataBase

sendRequest receiveRequest

caller callee

2 3

65

4

1 Client/Server Architecture

Figure 3: CS architecture.

To describe the structural hierarchy we use the
following three types of connectors.

Composition/Decomposition Connector (CDC)
used to link each configuration to its underling
elements. Therefore, this type of connector allows
the propagation of information among elements of
the structural hierarchy. And we can determine the
child’s or the configuration, if it is the case, of each
element deployed in the architecture. Figure 4
illustrates how to use CDC connector to represent
composition/decomposition relationships in the
client-server example.

CDC1

C
om

po
si

tio
n

D
ecom

positio

1

2 3

6 5 4

CDC2

L2

L1

L0

Figure 4: Structural hierarchy with CDC connector.

Attachment Connector (AC) we use this type of
connector to establish service-connections between
architectural elements1 deployed in the same level of
abstraction as illustrated in Figure 5. In some ADLs
this type of connector in called assembly connector
and represented by first class entity e.g. Acme
(Garlan, 2000). Inside the AC connector the glue
code specifies the interaction protocol among
communicating elements.

1 From now on, we use the term architectural element to mean a
component or a configuration.

2

L2

L1

L0

3

5 4 6

AC1

AC3 AC2

1

Figure 5: Structural Hierarchy with AC connectors.

The description of the RPC connector (AC1) used to
connect the client (node 2) to the server (node 3) is
the following:

At each level, in the structural hierarchy, we use

a different set of mechanisms to deal with the input
interfaces and the output interfaces. For this reason
inputs are generally expended when we shift from
(Li) to (Li-1) and outputs are compressed when we
shift from (Li-1) to (Li). The data format will change
when we change the level. So, it is necessary that
mechanisms used at each level are not the same.
From this observation we will define, in the
following, a connector for expansion of inputs and
compression of outputs.

Expansion-Compression Connector (ECC) we use
this type of connectors to establish service-
connections between configurations and their
underling elements (Figure 6). In some ADLs this
type of link is called binding like in Acme or
delegation like in UML but they don’t define it as a
first class entity.

3

Ex
pa

ns
io

n

C
om

pression

4
6

ECC

2

5

3L2

L1

L0

Figure 6: Structural hierarchy with one ECC connector.

Component Client {Port {send-request}}
Configuration Server {Port {receive-request}}
Connector AC1 (Client, Server) {
 Roles {Caller, Callee}
 Services {List of services}
 Properties {maxRoles: integer = 2, Synchronous: Boolean = true}
 Constraints {List of constraints}
 Glue {caller = callee}
 Connections {Client.send-request to RPC.caller
 Server.receive-request to RPC.callee} }

ICEIS 2008 - International Conference on Enterprise Information Systems

210

3.2.2 Behavioural Hierarchy (BH)

The BH represents the description of the system’s
behaviour at different hierarchical levels. Each
primitive element of the architecture has its own
behaviour. The behaviour description associated
with the highest level of the hierarchy represents the
overall behaviour of the architecture (Lanoix, 2007).
This behaviour is described by a global protocol P1.
The system architecture at this level is perceived as a
black box with a set of required services and
provided services. At lower level each component
and configuration has its own protocol to describe its
functionality. So, a protocol is used to specify the
behaviour function of an architectural element by
defining the relationship among the possible states
of this element and its ability to produce coherent
results. Figure 7 sketches how to decompose the
client-server protocol P1 at level L2 into its sub-
protocols at level L1. This decomposition process
produces two other protocols (P2, P3). By the same
process P3 protocol is decomposed to produce an
other set of sub-protocols at the last level. The
protocol leaves represent a primitive function of
elements which are available in the library.

P1

P2 P3

P4

e1

e1

x

P5 P6

s1 e1

s2

s1

Legend: Pi : Protocol i ; e1 : Input ; s1 : Output ;
 x , y, z : intermediate results

L0

L1

L2

y z

Figure 7: Plane representation of behavioural hierarchy.

To explicit the different relationships among
elements of the behavioural hierarchy we use the
same set of connectors defined in the previous
structural hierarchy, namely the CDC connector to
compose and decompose behaviour elements, AC
connector to link behaviours belonging to the same
hierarchical level and ECC to expanse and compress
exchanged information between behaviours.

3.2.3 Conceptual Hierarchy (CH)

Through the mechanism of specialization the
architect can create and classify element libraries
according to architecture development needs in each
target domain. The number of sub-type levels is
unlimited. But we must remain at reasonable levels
of specialization in order to keep compromise
between the use and the reuse of the architectural
elements. Those libraries represent the conceptual
hierarchy (Frakes, 2005). To implement the
conceptual hierarchy we use the following
connector.

Specialisation/Generalisation Connector (SGC) is
used to connect each element type to its super-type
in the same level of abstraction. The conceptual
hierarchy depicted in Figure 8 illustrates how to use
the SGC connector to generate the five meta-type
connectors from the first meta-connector defined by
C3. The SGC used at this level is the bootstrap for
the others meta-type connectors. Of course and by
the same way we can use the SGC connector to
specialise any architecture element.

CDC AC ECC

SGC

IOC

Connector G
eneralisationSp

ec
ia

lis
at

io
n

Figure 8: Conceptual hierarchy with SGC connector.

3.2.4 Metamodeling Hierarchy (MH)

The metamodeling hierarchy is defined by 4
abstraction levels (A0,…,A3). Each level (Ai) must
conform to the description given above in A(i+1)
level. The level A3 conforms to itself.
Symmetrically, each level (Ai) describes the inferior
level A(i-1). A0 is the application level (OMG, 2007).

Application level (A0) is an instance of the
architecture model (level A1). At this level the
developer has the possibility to select and instantiate
elements any times as he needs to describe his
application. Instances are created from element types
defined at A1 level. Elements are created and
assembled with respect to the different constraints
defined at A1 Level.

Architecture level (A1) at this level architecture is
described using language constructions defined at A2
level (e.g. C3 metamodel, UML 2.0). Thus, each

REPRESENTATION AND REASONING MODELS FOR C3 ARCHITECTURE DESCRIPTION LANGUAGE

211

architecture model is an instance of the metamodel
defined in the above level in the metamodeling
hierarchy.

Meta-architecture level (A2) defines the language
or the notation used to describe architectures at A1
level. Meta-architecture is also used to modify or
adapt the description language. All operations
undertaken at this level are always in conformance
with the top level of the pyramid.

Meta meta-architecture (A3) describes concepts
and elements used to define any new architecture
description language or new notation. In previous
work we have defined meta meta-architecture model
called MADL2 (Smeda, 2005). So, C3 metamodel is
defined in conformance with MADL. To connect
each architectural element instance to its type at the
above level we define the following connector:

Instance-Of Connector (IOC) is used to establish
connection between element instances and their
classifier defined in the above level. Figure 9
illustrates the connections between all components
instances used at the client-server application (A0)
and their component types at the architecture level
(A1) and the connections between all component
types at (A1) level with the C3 meta-component.
Those connections are realised using Instance-Of
connectors (IOC).

In
st

an
ce

-O
f

C3 Meta
Component

Client

IOC

DataBase Connection
Manager

IOC IOC IOC

CL2
DB1 CM1

CL1 CL3

Meta
Architecture

(A2)

Architecture
(A1)

Instance
(A0)

Figure 9: Internal view of IOC connector.

4 CONCLUSIONS

In this work we have defined metamodel called C3
to describe software architecture and to reason about
from different perspective views. The core elements
of C3 are components, connectors and
configurations. Elements are assembled using their

2 Meta Architecture Description Language

interfaces. Syntactic and semantic compatibility are
carried out using respectively interfaces-matching
and protocols-matching. In this metamodel we
mainly use structural hierarchy to describe the
structural decomposition of the system, behaviour
hierarchy to describe the behaviour decomposition,
conceptual hierarchy to describe elements type
libraries. Finally, we use the metamodeling
hierarchy to show how we can modify the
metamodel C3 and how to use it. Each hierarchy is
supported and tooled by explicit mechanisms to
provide the different form of connections. Contrary
to the usual ADLs, which define only the attachment
connectors, in C3 we define five types of connectors
to deal with different connection forms. Structural
and behavioural hierarchies use CDC, AC, and ECC
connectors. Conceptual hierarchy uses SGC
connector while metamodeling hierarchy uses the
IOC connector.

REFERENCES

Allen, R.J., 1997. A Formal Approach to Software
Architecture. PhD Thesis. School of Computer
Science, Carnegie Mellon University.

Amirat, A., Oussalah, M., Khammaci, T., 2007. Towards
an Approach for Building Reliable Architectures. In
Proceeding of IEEE IRI’07. Las Vegas, Nevada, USA,
pp. 467-472.

Frakes, W. B., Kang, K., 2005. Software Reuse Research:
Status and Future. IEEE Transactions on Software
Engineering. vol.31 n.7, pp.529-536.

Garlan, D., Monroe, R.T., Wile, D., 2000. Acme:
Architectural Description Component-Based Systems,
Foundations of Component-Based Systems.
Cambridge University Press, pp. 47-68.

Lanoix, A., Hatebur, D., Heisel, M., Souquières, J., 2007.
Enhancing Dependability of Component-Based
Systems. Ada-Europe’07, pp. 41-54.

Matevska-Meyer, J., Hasselbring, W., Reussner, R., 2004.
Software architecture description supporting
component deployment and system runtime
reconfiguration. WCOP’04, Oslo.

Medvidovic, N., Dashofy, E., Taylor, R.N., 2007. Moving
Architectural Description from Under the Technology
Lamppost. Information and Software Technology. pp.
12-31. Vol. 49, No. 1.

OMG, 2007. Unified Modeling Language: Infrastructure.
from http://www.omg.org/docs/formal/07-02-06.pdf.

Pinto, M., Fluentes, L., Troya, M., 2005. A Dynamic
Component and Aspect-Oriented Platform. The
Computer Journal. Vol.48 No. 4, pp. 401-420.

Smeda, A., Oussalah, M., Khammaci, T., 2005. MADL:
Meta Architecture Description Language. 3rd ACIS
International Conference SERA’05. Pleasant,
Michigan, USA, pp.152-159.

ICEIS 2008 - International Conference on Enterprise Information Systems

212

