demonstrated by examples which usually occur in
the radio, core and statistics databases. The
operations of MTOs have several other aspects
which were not considered in our study.
Through this study, we hope that data quality
problems for MTOs in specific and for the
telecommunication industry in general can be better
understood. We also envisage that this study can
provide the roadmap for industry relevant research
on data quality.
ACKNOWLEDGEMENTS
The authors wish to acknowledge the help of the
unnamed MTO through which this case study was
developed
REFERENCES
Al-Lawati, A., Lee, D., McDaniel, P. 2005. .locking-
aware Private Record Linkage, IQIS
Ballou, D. P., Pazer, H. 2003. Modeling Completeness
versus Consistency Tradeoffs in Information Decision
Contexts. IEEE Transactions on Knowledge and Data
Engineering , vol. 15, no. 1.
Ballou, D.P., Pazer, H.L. 1985. Modeling data and
process quality in multi-input, multioutput information
systems. Management Science, vol.31, no.2, 1985.
Bhagwat, D., Chiticariu, L., Vijayvargiya, T. G. 2004. An
Annotation Management System for Relational
Databases. VLDB.
Bohannon, P., Fan, W., Geerts, F., Jia, X.,
Kementsietsidis, A. 2007. Conditional functional
dependencies for data cleaning. In ICDE.
Buneman, P., Khanna, S. 2002. On Propagation of
Deletions and Annotations through Views. PODS
Chomicki J., Marcinkowski. J. 2005. Minimal-change
integrity maintenance using tuple deletions. Inf.
Comput., 197:90–121.
Churces, T., Christen, P. 2004. Some Methods for
Blindfolded Record Linkage. BMC Medical
Informatics and Decision Making 4, no. 9.
Cong, G., Fan, W., Geerts, F., Jia, X., Ma S. 2007.
Improving Data Quality: Consistency and Accuracy.
VLDB: 315-326.
Dasu, T., Johnson, T., Muthukrishnan, S., Shkapenyuk, V.
2002. Mining database structure; or, how to build a
data quality browser. SIGMOD Conference : 240-251.
Elmagarmid, A. K., Panagiotis, G.I., Verykios, S.V. 2007.
Duplicate Record Detection: A Survey. IEEE TKDE
19, no. 1.
Fox J. C., Levitin, A., Redman, T. 1994. The Notion of
Data and Its Quality Dimensions. Inf. Process.
Manage. 30(1): 9-20.
Freedman, M. J., Nissim, K., Pinkas, B. 2004. Efficient
Private Matching and Set Intersection. EUROCRYPT.
Gravano, L., Ipeirotis, P.G., Jagadish, H. V., Koudas, N.,
Muthukrishnan, S., Srivastava, D. 2001. Approximate
string joins in a database (almost) for free. In
Proceedings of the 27th International Conference on
Very Large Databases (VLDB), pages 491–500.
GSM Association. 2007.
http://www.gsmworld.com/technology/glossary.sht8
Miller, R., Haas, L., Hernandez. M. 2000. Schema
mapping as query discovery. In Proc. 26th VLDB
Conf., pages 77-88.
Pernici, B., Scannapieco M. 2002. Data Quality in Web
Information Systems. ER : 397-413.
Rahm E., Do. H. 2000. Data cleaning: Problems and
current approaches. IEEE Data Engineering Bulletin,
23(4):1-11.
Scannapieco, M., Figotin, I., Bertino, E., Elmagarmid, A.
K. 2007. Privacy preserving schema and data
matching. SIGMOD Conference : 653-664.
Scannapieco, M., Missier, P., Batini, C. 2005. Data
Quality at a Glance. Datenbank-Spektrum 14: 6-14
Silbershutz, A., Stonebreaker, M., AND Ullman, J. D.
1991. Database systems: Achievements and
opportunities. In Communication with ACM 34, 10,
110–119.
Srivastava, D., Velegrakis, Y. 2007. Intensional
Associations Between Data and Metadata. SIGMOD.
Tejada, .S, Craig, A., Knoblocka, A., Minton, S. 2001.
Learning object identification rules for information
integration. Information Systems Volume 26, Issue 8,
Pages 607-633.
Thone, H., Kiessling, W., Guntzer, U. 1995. On cautious
probabilistic inference and default detachment. Ann.
Oper. Res. 55, 195–224.
Wang, R. Y., Storey V. C., Firth, C. P. 1995. A
Framework for Analysis of Data Quality Research.
IEEE Trans. Knowl. Data Eng. 7(4): 623-640
ICEIS 2008 - International Conference on Enterprise Information Systems
444