interesting rules. In Proceedings of ACM KDD1999,
ACM Press, page 145154.
Benayadi, N. and Le Goc, M. (2007). Using an oriented j-
measure to prune chronicle models. To appear in the
proceedings of the 18th International Workshop on the
Principles of Diagnosis (DX07), Nashville, USA.
Blachman, N. (1968). The amount of information that y
gives about x. Information Theory, IEEE Transac-
tions, 14:27–31.
Bouch´e, P., Le Goc, M., and Giambiasi, N. (2005). Mod-
eling discrete event sequences for discovering diagno-
sis signatures. Proceedings of the Summer Computer
Simulation Conference (SCSC05) Philadelphia, USA.
Cauvin, S., Cordier, M.-O., Dousson, C., Laborie, P., L´evy,
F., Montmain, J., Montmain, M., Porcheron, M.,
Servet, I., and Trav´e, L. (1998). Monitoring and alarm
interpretation in in-dustrial environments. AI Commu-
nications ,IOS Press , 1998, pages 139–173.
Dousson, C. and Duong, T. V. (1999). Discovering chron-
icles with numerical time constraints from alarm logs
for monitoring dynamic systems. In D. Thomas, edi-
tor, Proceedings of the 16th International Joint Con-
ference on Artificial Intelligence (IJCAI-99), 1:620–
626.
Ghallab, M. (1996). On chronicles: Representation, on-line
recognition and learning. Proc. Principles of Knowl-
edge Representation and Reasoning, Aiello, Doyle
and Shapiro (Eds.) Morgan-Kauffman,, pages 597–
606.
Hanks, S. and Dermott, D. M. (1994). Modeling a dynamic
and uncertain world i: symbolic and probabilistic rea-
soning about change. Artificial Intelligence, pages 1–
55.
Hatonen, K., Klemettinen, M., Mannila, H., Ronkainen, P.,
and Toivonen, H. (1996a). Knowledge discovery from
telecommunication network alarm databases. In 12th
International Conference on Data Engineering (ICDE
’96). New Orleans, LA, pages 115–122.
Hatonen, K., Klemettinen, M., Mannila, H., Ronkainen, P.,
and Toivonen, H. (1996b). Tasa: Telecommunica-
tion alarm sequence analyzer, or how to enjoy faults
in your network. In IEEE Network Operations and
Management Symposium (NOMS ’96). Kyoto, Japan,
pages 520–529.
Hilderman, R. and Hamilton, H. (2001). Knowledge dis-
covery and measures of interest. Kluwer Academic
publishers.
Huynh, X.-H., Guillet, F., and Briand., H. (2005). Arqat:
An exploratory analysis tool for interestingness mea-
sures. In Proceedings of the 11th international sympo-
sium on Applied Stochastic Models and Data Analysis
ASMDA-2005, page 334344.
Jaroszewicz, S. and Simovici, D. A. (2001). A general
measure of rule interestingness. In Proceedings of
PKDD2001, Springer-Verlag, page 253265.
Le Goc, M. (2004). Sachem, a real time intelligent diagno-
sis system based on the discrete event paradigm. Sim-
ulation, The Society for Modeling and Simulation In-
ternational Ed., 80(11):591–617.
Le Goc, M. (2006). Notion d’observation pour le diagnostic
des processus dynamiques: Application `a Sachem et
`a la d´ecouverte de connaissances temporelles. Hdr,
Facult´e des Sciences et Techniques de Saint J´erˆome.
Le Goc, M., Bouch´e, P., and Giambiasi, N. (2005). Stochas-
tic modeling of continuous time discrete event se-
quence for diagnosis. 16th International Workshop on
Principles of Diagnosis (DX’05) Pacific Grove, Cali-
fornia, USA.
Liu, B., Hsu, W., Chen, S., and Ma, Y. (2000). Analyz-
ing the subjective interestingness of association rules.
IEEE Intelligent Systems, page 4755.
Mannila, H. (2002). Local and global methods in data min-
ing: Basic techniques and open problems. 9th Interna-
tional Colloquium on Automata, Languages and Pro-
gramming, Malaga, Spain,, 2380:57–68.
Mannila, H., Toivonen, H., and Verkamo, A. I. (1997). Dis-
covery of frequent episodes in event sequences. Data
Mining and Knowledge Discovery, pages 259–289.
Padmanabhan, B. and Tuzhilin, A. (1999). Unexpectedness
as a measure of interestingness in knowledge discov-
ery. Decision Support Systems, pages 303–318.
Roddick, J. and Spiliopoulou, M. (2002). A survey of tem-
poral knowledge discovery paradigms and methods.
IEEE Transactions on Knowledge and Data Engineer-
ing, 14:750–767.
Shannon, C. and Weaver, W. (1949). The mathematical the-
ory of communication. University of Illinois Press,
27:379–423.
Shore, J. and Johnson, R. (1980). Axiomatic derivation of
the principle of maximum entropy and the principle
of minimum cross-entropy. Information Theory, IEEE
Transactions, 26:26–37.
Smyth, P. and Goodman, R. M. (1992). An information
theoretic approach to rule induction from databases.
IEEE Transactions on Knowledge and Data Engineer-
ing 4, page 301316.
Tan, P.-N., Kumar, V., and Srivastava, J. (2004). Selecting
the right objective measure for association analysis.
Information Systems, 29(4):293–313.
Theil, H. (1970). On the estimation of relationships involv-
ing qualitative variables. American Journal of Sociol-
ogy, pages 103–154.
Vaillant, B., Lenca, P., and Lallich, S. (2004). A clustering
of interestingness measures. In Proceedings of the 7th
International Conference on Discovery Science, pages
290–297.
ICEIS 2008 - International Conference on Enterprise Information Systems
260