
A METHOD FOR ENGINEERING A TRUE
SERVICE-ORIENTED ARCHITECTURE

G. Engels1, A. Hess, B. Humm2, O. Juwig, M. Lohmann, J.-P. Richter, M. Voß and J. Willkomm
sd&m Research – software design and management, Carl-Wery-Straße 42, 81739 München, Germany

1 additionally University of Paderborn, 2 additionally Darmstadt University of Applied Sciences

Keywords: Service-oriented architecture, enterprise IT architecture, business service, domain, component, interface.

Abstract: Service oriented architecture (SOA) is currently the most discussed concept for engineering enterprise IT
architectures. True SOA is more than web services and web services style of communication. In the first
place, it is a paradigm for structuring the business of an enterprise according to services. This allows
companies to flexibly adapt to changing market demands. Subsequently, it is a paradigm for structuring the
enterprise IT architecture according to those business services. This paper presents a concrete method and
rules for engineering an enterprise IT architecture towards a true SOA. It can be seen as an instantiation of
roadmaps in enterprise architecture frameworks.

1 INTRODUCTION

Service-oriented architecture (SOA) is currently the
most discussed concept for structuring enterprise IT
architectures. Virtually hundreds of publications –
e.g., (Bieberstein et al. 2005), (Erl 2005), (Krafzig et
al. 2004), (Richter et al. 2005), (Woods 2004), to
name a few prominent ones – give it the character of
hype. Like with all hype topics, it is hard to find
precise and agreed definitions and it is unclear
whether it will prove an enduring paradigm or
whether it will vanish as quickly as it appeared.

The service is a central concept of an SOA.
There is no agreed definition of a service. Some
publications associate service with a particular
technology, namely web services (W3C
WebServices). Most publications abstract from the
specific technology but their definitions resemble
the idea behind web services: a service as
implemented business logic which can be accessed
via standardized interfaces (e.g., (Reussner,
Hasselbring 2006), Chapter 12). Those definitions
resemble aspects of the well-known software
engineering concepts of components, interfaces and
operations (e.g., (D’Zousa Wills 1999), (Szyperski
2002)). A WSDL definition (W3C WSDL) specifies
types, messages, operations, services and bindings.
Operations in WSDL are equivalent to operations in
most programming languages or in UML (OMG
UML). WSDL types are used to specify operation

signatures. Request and reply messages are used to
implement operations. A service in WSDL
comprises a number of operations. Insofar, it
resembles the concept of an interface in
programming languages like Java or C#. A service
also specifies a binding to an implementation that
provides the specified operations. Insofar, a WSDL
service resembles the concept of a component like in
JEE (Shannon et al. 2000) or .NET (Microsoft
.NET).

If SOA is reduced to this, it introduces just new
terms for the established software engineering
concepts of component-orientation: old wine in new
skins.

In his article “SOA revisited” (Siedersleben
2007), Siedersleben states that SOA = component
orientation + loose coupling + workflow. But like
component orientation, loose coupling (Yourdon,
Constantine 1986) and workflow (Jackson, Twaddle
1997) are well-known software engineering
concepts. Applying them to the enterprise IT
architecture level does not justify a whole new set of
terminology.

Some publications, e.g., (Woods 2004), take a
different look at SOA: a paradigm for structuring the
business of an enterprise in form of services which
then drives the IT enterprise architecture. We share
this point of view and regard such an enterprise
architecture as true SOA only. In Section 2 we go
into details.

272
Engels G., Hess A., Humm B., Juwig O., Lohmann M., Richter J., Voß M. and Willkomm J. (2008).
A METHOD FOR ENGINEERING A TRUE SERVICE-ORIENTED ARCHITECTURE.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 272-281
DOI: 10.5220/0001697302720281
Copyright c© SciTePress

Taking this different view on SOA, the question
arises as to how to structure the business and how to
deduce the enterprise IT architecture. Unfortunately,
there are only few publications which provide
architects with concrete engineering methods and
rules for constructing a true SOA. This paper is
exactly about that.

The work presented is part of the research effort
Quasar Enterprise which has been performed at
sd&m Research within the last five years. During
this time, we have analyzed more than 20 large-scale
industrial projects with a total effort of more than
100 person years. In a number of publications ((Hess
et al 2007), (Hess et al. 2006), (Humm, Juwig 2006),
(Humm et al. 2007), (Voß et al. 2006), (Richter
2005), (Engels et al. 2008)), we have extracted the
essence of those project learnings and have
presented individual method chunks. In this paper,
we publish the complete method for engineering a
true SOA for the first time.

The paper is structured as follows. In Section 2,
we define SOA and services in the business context.
In Section 3, we give an overview of the method for
engineering a true SOA. Sections 4-7 present
individual method chunks. In Section 8, we describe
large-scale industrial experience with this method.
Section 9 concludes the paper.

2 SERVICE-ORIENTED
BUSINESS

SOA is a paradigm for structuring the business of an
enterprise and for structuring the enterprise IT
architecture accordingly. Let us start with the
business aspect by reviewing the historical process
of industrialization, e.g., in the automotive industry.
A hundred years ago, cars were manufactured as
single-item production with a high in-house
production depth. Not only all parts of a car were
produced and assembled within the company. Often
even the tool kits were produced within the
company. Only raw materials were bought. This
production process was comparably inefficient. With
increasing competition, automotive manufacturers
were forced to increase their efficiency. One way is
to divide labour. With increasing maturity of the
business, the in-house production depth was
decreased.

Automotive manufacturers today often act as
integrators only. Most parts are being produced by
suppliers – even central units like engines. Suppliers
provide business services to the automotive

manufacturers – who themselves provide business
services to end customers.

This leads us to the following definitions. A
business service is the output of a service provider
towards a service consumer: goods, information, or
activities. A business service is based on a service
contract. It specifies in- and outgoing information
and goods and the basic course of action. Service
actions are the steps of service provisioning which
are visible to the service consumer.

Service-orientation in this sense means
structuring your business according to the business
service. Even when services are provided within a
company, service contracts are to be specified. This
allows enterprises to react faster to market pressure
and adapt the in-house production depth, e.g., via
outsourcing or off shoring. If an automotive
manufacturer wants to outsource a portion of its
value chain, e.g., car leasing, the question is whether
the enterprise IT architecture facilitates or hinders
this strategic business decision.

At the beginning of this section, we defined SOA
as “a paradigm for structuring the business of an
enterprise and for structuring the enterprise IT
architecture accordingly”. We use the term true SOA
if changes in the business (e.g., new products and
services, outsourcing, insourcing, offshoring,
mergers and acquisitions) can be supported by IT
without major restructuring of the enterprise IT
architecture.

In the following sections, we describe a method
for stepwise engineering a true SOA starting with
modelling business services.

3 A METHOD FOR
ENGINEERING A TRUE SOA

See Figure 1 for an overview – we are using UML 2
(OMG UML) for figures throughout this paper. The
method consists of four method chunks. On the
business side, we describe a method chunk for (a)
stepwise refining business services. On the IT side,
the business services are taken as input for method
chunks for (b) designing domains, (c) designing
components and (d) designing interfaces.

The method presented can be seen as an
instantiation of enterprise architecture frameworks
like The Open Group Architecture Framework
(TOGAF), the Integrated Architecture Framework
(IAF), the Zachmann Framework (Zachmann 1987),
or the Department of Defense Architecture
Framework (DoDAF). All those frameworks

A METHOD FOR ENGINEERING A TRUE SERVICE-ORIENTED ARCHITECTURE

273

Business IT

Business
services

1. Modelling
business services

2. Designing domains

3. Designing components

4. Designing interfaces

Domains

Components

Interfaces

Figure 1: Overview of the method.

have in common that they distinguish between
different aspect areas for business and IT. In the
overview figures of this paper, we illustrate those
aspect areas via swim lanes (see Figure 1). The
frameworks provide terminology in form of meta
models and the concept of abstract roadmaps for
engineering artefacts in enterprise architecture
projects. However, they do not provide concrete
methods: this is left to instantiations like the one we
present in this paper.
We describe the individual method chunks in the
following sections. We use a tourism example for
illustration: Christopher Columbus Travel Pty. Ltd
(CCT) is a fictitious tour operator that sells package
holidays and custom holidays world-wide.

4 MODELLING BUSINESS
SERVICES

Business services can be defined on different levels
of granularity. Coarse-grained services consist of
finer-grained services. So, they form a hierarchy.
See Figure 2 for an overview of the method for
modelling a business services hierarchy.
1. Identify top-level business services (ca. 5-10):

The first step of the method is fairly straight
forward since top-level business services are
generic. For Christopher Columbus Travel Pty.
Ltd (CCT) they are: plan (evaluate last travel

season and plan new one), purchase (buy hotel
beds and flight seats), produce (design travel
packages and fix a price), sell (book travels), and
service (help customers before, during, and after
travel). The top-level services of most enterprises
will be named similarly.

Business

Identify top-level
business services

Identify service
actions

Specify
business services

Refine
business services

IT

Business
services

1. Modelling
business services

Figure 2: Modelling business services.

2. Identify service actions: The actions of a service
are the candidates for the next finer-grained
business services. E.g., the actions of the service
sell are compose travel, book travel, and transact
payment.

3. Refine business services: Services are refined if
the following conditions hold:
(a) There are multiple service providers, e.g.,
travel agent (action compose travel) and booking
engine (action book travel).
(b) The coarse-grained service supports multiple
business goals, e.g., the service sell supports the
business goals customer satisfaction (action
compose travel) and profitability (action transact
payment).
(c) If not all business goals are covered by the
actions of the coarse-grained service, additional
fine-grained services need to be added.
Steps 2 and 3 are iterated until a suitable level of
granularity is reached – at the latest when
elementary business services are found. The
actions of elementary business services cannot be
interrupted, e.g., check availability.

4. Specify business services: Business services
resemble the behaviour of a system (e.g., a
company or a department within a company) at its

ICEIS 2008 - International Conference on Enterprise Information Systems

274

boundary with respect to its users (e.g., customers
of a company). Concerning this aspect, business
services are like use cases (Jacobson 1992).
Therefore, we specify business services like use
cases, i.e., by UML use case diagrams (OMG
UML) and tabular prose descriptions. The
descriptions may be structured as follows:
(a) Service name
(b) External view: (b1) Service provider, service
consumer, (b2) Trigger / pre-conditions (b3)
course of action (b4) result / post-conditions (b5)
non-functional requirements
(c) Internal view: Service provisioning

See Figure 3 for a selection of business services of
CTT. The method for modelling business services is
an application of the well-known software
engineering technique of functional decomposition
(Simon 1993). A similar method has been described
in (Jones, Morris 2007).

Plan

Purchase

Produce

Service

CCT Services

Compose travel

Book travel

Transact
payment

Sell

Figure 3: Business services of CTT.

5 DESIGNING DOMAINS

By enterprise IT architecture we understand the set
of all business applications – standard software and
custom software – of an enterprise as well as their
interconnection.

In a true SOA, the enterprise IT architecture is
structured according to the business services.
Structuring is a means for managing complexity.
The enterprise IT architectures of large enterprises
comprise hundreds of applications – each one in
itself enormously complex.

The means for structuring an enterprise IT
architecture are domains. We use the term domain
knowing that (like component) it is heavily used in
different contexts with various meanings, e.g.,
domains in data modelling, domain specific
languages, domains in component models like .NET,
or business domains like banking.

In this section, we present a method for
designing domains, i.e., the top-level structure of an

enterprise IT architecture. Figure 4 refines the
method overview in Figure 1 by identifying three
method inputs:
1. Business services, here the top-level services

only. We distinguish between core business
services and management & support services.
Core business services support the enterprise’s
business directly. For CTT, they are plan,
purchase, produce, sell, and service (see Figure
3). Management & support services are
necessary as well but support the enterprise’s
business only indirectly. Examples are
accounting, reporting, personnel, etc.

2. Business objects are the most relevant top-level
items of an enterprise. The architect can deduce
them by analyzing the in- and outgoing goods
and information of business services. For CTT,
they are customer (the traveller), product (travel
packages), order (a tour booking), supplier
(hotels and airlines), and resource (hotel beds,
flight seats). In most industries, the top-level
business objects are named similarly.

3. Business dimensions reflect the enterprise’s
business strategy: which products are sold to
which customers / markets and how long is the
enterprise’s value chain (the in-house
production depth for manufacturing
enterprises)? See Figure 5.

Business IT

Apply
core business services

Apply
business dimensions

Finalize

Apply
business objects

Apply management &
support services

Business
services

2. Designing
domains Domains

Business
dimensions

Business
objects

Figure 4: Designing domains.

A METHOD FOR ENGINEERING A TRUE SERVICE-ORIENTED ARCHITECTURE

275

- Package tour
- Custom tour

- Travel agency
- Internet
- Call Center

e.g.,
- own hotels
- purchase in advance
- purchase on demand

- …
- ...

- Premium brand
- Budget brand

Customers / Markets

Products

Customer
Channels

Length of
Value Chain

. . .

Figure 5: Business dimensions of CTT.

Given this input, the method is as follows.
1. Apply core business services: Take the top-level

core business services as the initial domains, in
our example Planning (from plan), Purchasing
(from purchase), Production (from produce),
Sales (from sell), and Service (from service).

2. Apply business dimensions: Split domains
according to the characteristics of one or more
business dimensions if their handling
substantially differs from a business point of
view. Iterate this step as long as the business
strategy demands further differentiation.
This is the most complex step of the method
which requires substantial business and modelling
expertise. In our example, the domain Production
is split into the domains Production package
tours and Production custom tours since they are
handled completely differently. The splitting can
be more complex, e.g. over multiple dimensions
at once. So, Sales differs according to the
customer channels (travel agency, internet, call
centre) and the different services along the value
chain (compose travel, book travel).

3. Apply business objects: Consider the top-level
business objects. In which of the domains are
they being generated, modified, or deleted? Make
new domains for all business objects that are
being created, modified, or deleted in more than
one of the existing domains.
In our example, we get the new domains
Customer Management (from business object
Customer), Order Management (from Order),
and Resource Management (from Resource).

4. Apply management & support services: Make
domains for all management & support services.

They usually follow the structure of the enterprise
resource planning (ERP) software used.

5. Finalize: Find meaningful domain names that are
understood and accepted throughout the
enterprise – if not already done during the
iterations. Find a meaningful and intuitive
graphical representation of the domain model.
Check for completeness of the model by mapping
the physical as-is applications to the domains. In
Figure 6, we show the final domains as UML
packages (OMG UML).

6 DESIGNING COMPONENTS

In this paper, we use the term application informally
only: an application embraces those pieces of
software which are perceived by the users as
belonging together. The users of CTT’s internet
travel portal perceive the booking engine as part of
the portal. From the software engineering point of
view, portal and booking engine are different
components. The design of the components is one of
the main engineering tasks – so we focus on
components from now on. Here, we speak about
enterprise components, i.e., components in the large,
consisting of millions of lines of code – not EJBs or
even Java beans.

We define: An enterprise component implements
a large portion of business logic, exports and imports
interfaces. An interface groups the operations of a
component and specifies their protocol of use. An
operation is described by its signature, its semantics
and non-functional properties.

Similar definitions can be found in numerous
books on component orientation, e.g., (D’Zousa
Wills 1999), (Szyperski 2002). In this section, we
present a method for designing enterprise
components. See Figure 7.

CCT

Purchasing
(PUR)

Customer
Management

(CUM)

Booking
(BOK)

Resource
Management

(RSM)

Production
Package Tours

(PPT)

Production
Custom Tours

PCT) Service
(SRV)

Accounting
(ACC)

Reporting
(REP)

C
ore B

usiness
R

essouces
S

upport
C

ustom
er

A
ccess

Travel agency
(TRA)

Internet
(INT)

Call Center
(CCE)

Planning
(PLA)

Order
Management

(ORM)

Personell
(PER)

Figure 6: CCT domains.

ICEIS 2008 - International Conference on Enterprise Information Systems

276

Business IT

Categorize services

Refine components

Finalize

Assign to
domains

Business
services

3. Designing
components

Domains

Components

Figure 7: Designing components.

1. Assign to domains: Take business services of the
service hierarchy (see Section 4). Disregard the
business services which are performed by humans
only and select the ones that are – at least
partially – to be performed by IT (called
application services). Assign those application
services to the domains.
In our example, the service compose travel is
assigned to the domains Travel Agency, Internet,
and Call Centre, the service book travel to the
domain Booking.

2. Categorize services: We distinguish four
categories:
(a) Data: managing business objects
(b) Function: providing algorithmic business
logic
(c) Process: providing flow-oriented business
logic
(d) Interaction: allowing users to interact with
applications.
The application services are categorized
according to those four categories. For the
application services of one domain and one
category, one enterprise component is constructed
each.
In our example, the service compose travel is
categorized as interaction, the service book travel
as function and the service transact payment as
process.

3. Refine components: The enterprise components
constructed so far are being split according to the
following rules:

(a) Business logic that changes at a different pace
shall be separated.
(b) Transaction data shall be separated from static
data.
(c) Components shall not have cyclic
dependencies.
(d) Components of different categories shall have
dependencies according to a layering interaction

 process function data.
4. Finalize: Check the components for completeness

with respect to the services to be covered. Find
meaningful names (see Figure8).

Legend
Interaction
component

Function
component

Process
component

Data
component

Domain

<<AL>>

xxxx
xxxx
xxxx

<<AL>>

<<AL>>

<<AL>>

ANM

VKI

PGP VKP

RAM
<<AL>>

Auftrags-
management

AUMA

<<AL>>

Pauschal-
Preisberechnung

PPRB

<<AL>>

Individualbu-
chungssteuerung

IBST

<<AL>>

Pauschalbu-
chungssteuerung

PBST

Zu migr.

CTT

K
erngeschäft

PUR

CUM

BOK

RSM

PPT

PCT SRV

ACC REP

TRA INT CCE

PLA

ORM

<<AL>>

Order
Mgmt.

<<AL>>

Cust.
Mgmt.<<AL>>

Hotel
Stock

<<AL>>

Prizing

<<AL>>

Booking
Custom

<<AL>>

xxxx
xxxx
xxxx

Travel
Portal

<<AL>>

Travel
Config.

<<AL>>

Accoun-
ting

<<AL>>

Booking
Package

<<AL>>

Repor-
ting

<<AL>>

Flight
Stock

<<AL>>

Supplier
Mgmt

<<AL>>

Flight
Purch.

<<AL>>

Hotel
Purch.

<<AL>>

Payment

...

<<AL>>

Virtual
Stock

<<AL>>

Planning

<<AL>>

xxxx
xxxx
xxxx

Call
Center

<<AL>>

xxxx
xxxx
xxxx

Travel
Agency

PER <<AL>>

Perso-
nell

<<AL>>

Package
Config.

Figure 8: CTT enterprise components.

7 DESIGNING INTERFACES
AND OPERATIONS

After having designed the enterprise components,
their interfaces and operations need to be
constructed. See Figure 9 for an overview of the
method.
1. Use service actions for operations: Again, we

focus on application services, i.e., those business
services that are performed by IT. The actions of
those application services become operations.
E.g., for the service manage customers, the
actions are create customer, handle duplicates,
modify customer, and delete customer. They
become the operations createCustomer,
handleDuplicates, modifyCustomer, and
deleteCustomer.

A METHOD FOR ENGINEERING A TRUE SERVICE-ORIENTED ARCHITECTURE

277

Use service actions
for operations

Apply rules

Group to
interfaces

Validate

Business IT

Business
services

4. Designing
interfaces

Components

Interfaces

Figure 9: Designing interfaces.

2. Apply rules: If the interfaces and their operations
do not adhere to the following rules they have to
be adapted accordingly:
(a) Business-oriented: every operation shall
provide business logic only and must not reveal
implementation details
(b) Coarse-grained: operations shall comprise as
much business logic as possible
(c) Idempotent: Multiple invocations of an
operation with the same parameters shall have the
same effect as a single invocation.
(d) Compensating: For each operation there shall
be a compensating operation which undoes its
business implications.
(e) Context free: Operations shall have minimal
knowledge on the context in which they are
invoked (session context, transaction context,
batch / online).
In our example, we specify the operation
createCustomer to always perform a check for
duplicates before creating a new customer record.
This check makes the operation idempotent. Is the
operation erroneously invoked twice then the
second invocation will not generate another
customer record.

3. Validate: The operations are checked for
completeness with respect to the services to be
covered. Possible methods are:
(a) Make a UML sequence diagram for each
application service, using the components and
their operations
(b) Compare the operations with the physical

operations of existing applications, e.g., ERP
systems

4. Group to interfaces: The operations constructed
so far are grouped to interfaces. Possible grouping
criteria are:
(a) According to user groups
(b) According to access mode (read / write)
The operations and interfaces are to be named
properly.

8 INDUSTRIAL EXPERIENCE

In the last sections, we have described a set of
methods for stepwise designing domains,
components, interfaces and operations in an
enterprise IT architecture. In industrial practise,
enterprise IT architectures are hardly ever designed
and implemented from scratch. Usually, they have
existed for decades and they are only reconstructed
locally on demand. The set of methods described are
useful for exactly this: designing an ideal enterprise
IT architecture which is used as a guideline when
reconstructing parts of the existing physical
enterprise IT architecture.

The methods and rules presented in this paper
have proven useful in many large-scale industrial
projects. Regarding the method for designing
domains, we have analyzed 18 enterprise IT
architectures of large corporations in different
industry sectors. In some cases, the method for
constructing the domain model has been applied
explicitly, in others implicitly. The analysis
demonstrates convincingly that business services,
business objects, and business dimensions play an
important role and, hence, give evidence of the
validity of the method described. See Figure 10.

We have, furthermore, analyzed ten large-scale
industrial projects in different industry sectors
concerning their compliance to the rules presented in
the methods for designing components and
interfaces. Figure 11 gives an overview of the result.
In the matrix, we have made an entry only if one of
the rules (rows) has been explicitly and consequently
applied in one of the projects (columns). No entry
was made if the rule was not applicable in the
context or has only been applied implicitly. A large
circle denotes that it has been proven that the
application of the rule had a positive effect on the
enterprise IT architecture, e.g., by reduced
maintenance costs. Figure 11 shows convincingly
that all the rules presented have proven industrial
relevance.

ICEIS 2008 - International Conference on Enterprise Information Systems

278

Industry
sector

Business
functions

Business
objects

Value chain Customers,
markets

Products Channels Management
& support

Automotive • Supply
• Order

Mgmt
• Production
• Logistics

• Order

 • Passenger
cars

• Trucks
• Bus

 • Quality
mgmt

• Finance &
controlling

Banking • Advice
• Sales

• Customer
• Product
• Account

• Securities
 outsrc.

 • Loans
• Payments

• Customer
& bank
frontends

• Accounting
• Controlling

Banking • Support
service

• Operations

• Business
partner

• Payment
TXN
central
bank

• Retail
customers

• Corporate
customers

• Investment
banking

• Financing

• Branch
mgmgt

• Customer
interaction

• Bank
mgmt.

• Regulatory
reporting

Banking • all are split • Partner • Order
mgmt.

• Securities
settlement

• Credit
approval

• Credit
admin.

• Retail
• Private
• Corporate

• Account
products

• Complex
credits

 • Risk
controlling

• Market
data supply

Life
Insurance

• Product
devel.

• Acquisition
& advice

• Conclusion
• Payments

• Contract
mgmt.

• Claims
• Customer

mgmt.

 • Life
insurance

 • Financing
• Sales

mgmt.

Insurance • Service
• Analysis

• Contract
• Partner

 • Life
insurance

• Property
insurance

 • Office
comm..

• Planning

Public • Customer
care &
advice

• Cash
benefit

• File mgmt.
• Personal

data mgmt.

 • Monetary
service

• Programs

• Customer
channels
(face-to-
face,
phone, …)

• Personnel
• Admini-

strative
services

Tele-
communi-
cation

• Sales &
marketing

• Invoicing

• Supplier &
partner

• Customer

 • Business

Tourism • Product
mgmt &
design

• Booking

• Contract &
resource
mgmt.

 • Multi-
channel
services

• Monitoring
& ERP

Figure 10: Domains in different industry sectors.

(a, b) Business
logic

Use of four
categories

(d) Dependencies
categories

(c) Cyclic
dependenciesD

es
ig

ni
ng

co
m

po
ne

ns
D

es
ig

ni
ng

in
te

rfa
ce

s

(a) Business
oriented

(d) Compensating

(b) Coarse-grained

(c) Idempotent

(e) Context free

P4
: T

el
ec

om
m

un
ic

at
io

n

P5
: L

og
is

tic
s

P1
: F

in
an

ci
al

 s
er

vi
ce

s

P2
: A

ut
om

ot
iv

e

P3
: G

ov
er

nm
en

t

P6
: L

og
is

tic
s

P7
: A

ut
om

ot
iv

e

P8
: F

in
an

ci
al

 s
er

vi
ce

s

P9
: F

in
an

ci
al

 s
er

vi
ce

s

P1
0:

 F
in

an
ci

al
 s

er
vi

ce
s

Legend

Rule applied

Proven success

Figure 11: Use of rules in industrial projects.

9 CONCLUSIONS

Is SOA a hype that will vanish as quickly as it
appeared? Definitely not. SOA is based on sound
software engineering principles like separation of
concerns (Dijkstra 1982), information hiding
(Parnas 1972) and strong cohesion, loose coupling
(Yourdon, Constantine 1986). It applies those
principles to enterprise IT architecture, i.e.,
architecture in the large. To introduce a true SOA is
costly and takes a long time but it pays (see (Richter
2005)).

Is SOA old wine in new skins, just a rewording
of the principles of component orientation? When
SOA is reduced to web services or a web services
style of communication then this impression is,
indeed, justified. But SOA is more than component
orientation + loose coupling + workflow
(Siedersleben 2007). It is a paradigm for structuring
an enterprise’s business as business services in the
first place and subsequently engineering the
enterprise IT architecture accordingly. If done right
this gives enterprises the flexibility to adapt their
business strategies according to market demands:
sell new products, acquire new market segments,
outsource, offshore, etc. Viewing departments
within an enterprise as service providers with
specified contracts allows for flexibly rearranging if
needed.

If then the IT follows this structuring of the
business into services then IT becomes a facilitator
rather than a hinderer of such changes. And this is
what true SOA is about.

It is relatively easy to make such a statement but
it is enormously difficult to actually realize it.
Unfortunately, in the vast SOA literature there are
little concrete methods and rules that help an
architect to engineer an enterprise IT architecture
towards a true SOA. This exactly is the contribution
of this paper. We have presented a method for
modelling business services and, from there, design
domains, components, interfaces and operations of
an enterprise IT architecture. The resulting
enterprise IT architecture is truly service-oriented.

Hardly ever an enterprise IT architecture is
implemented from scratch. So, the methods –
although presented in a top-down manner – will
usually not be performed sequentially on all levels
of detail. Instead, the method for designing domains
is being used to get an overview of the entire IT
application landscape. The methods for designing
components and domains are being used
incrementally and locally on parts of the enterprise
IT architecture where ever rework is necessary due

A METHOD FOR ENGINEERING A TRUE SERVICE-ORIENTED ARCHITECTURE

279

to business needs. So, the methods presented help
the architect in engineering an existing enterprise IT
architecture towards a true SOA in a stepwise
fashion.

To make one thing clear: the task of engineering
an enterprise IT architecture is a most responsible
one that requires a lot of experience. Mechanically
applying our method in an uninformed manner will
not lead to a true SOA. A high degree of business
and modelling expertise is a prerequisite. However,
our method condenses the experience of numerous
architects and so presents a useful guideline to
architecting a true SOA.

REFERENCES

Bieberstein, N., Bose S., Fiammante, M., Jones, K., Shah,
R.: Service-Oriented Architecture (SOA) Compass:
Business Value, Planning, and Enterprise Roadmap.
IBM Press, 2005

Dijkstra, E. W.: Selected Writings on Computing: A
Personal Perspective. Manuscript On the role of
scientific thought. Springer-Verlag, 1982.

D’Souza, D. F., Wills, A. C.: Objects, Components and
Frameworks with UML: The Catalysis Approach.
Addison-Wesley, 1999.

DoDAF Department of Defense: DoD Architecture
Framework Version 1.5: Volumes I, II, and III. 23
April 2007

Engels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M.,
Richter, J.-P., Voß, M., Willkomm, J: Quasar
Enterprise – Anwendungslandschaften service-
orientiert gestalten. To appear: dpunkt-Verlag 2008.

Erl, T: Service-Oriented Architecture. Concepts,
Technology, and Design. Prentice Hall International,
September 2005

Hess, A., Humm, B., Voß, M.: Regeln für
serviceorientierte Architekturen hoher Qualität.
Informatik Spektrum Heft 6/2006, Springer Verlag.
Dezember 2006.

Hess, A., Humm, B., Voß, M., Engels G.: Structuring
Software Cities - A Multidimensional Approach.
Proceedings of the 11th IEEE International EDOC
Conference (EDOC 2007) The Enterprise Computing
Conference. Annapolis, Maryland, USA. October 2007.

Humm, B., Juwig, O.: Eine Normalform für Services.
Proceedings Software Engineering 2006. GI Edition
Lecture Notes in Informatics (LNI) P-79. Gesellschaft
für Informatik, 2006.

Humm, B., Lohmann, M., Voß, M., Willkomm, J.: Ein
praxiserprobtes Rahmenwerk für die technische
Anwendungsintegration. In: Bleek, W.-G.,
Schwentner, H., Züllighoven, H. (Hrsg.): Software
Engineering 2007 - Beiträge zu den Workshops.
Lecture Notes in Informatics, Band 106, Gesellschaft
für Informatik, 2007.

IAF Capgemini: Integrated Architecture Framework.
http://www.capgemini.com/iaf

Jackson, M., Twaddle, G.: Business Process
Implementation: Building Workflow Systems,
Addison-Wesley 1997,

Jacobson, I.: Object-Oriented Software Engineering: A
Use Case Driven Approach, Addison Wesley,
Reading, Massachusetts, June 1992.

Jones, S., Morris, M.: A Methodology for Service
Architectures. http://www.oasis-open.org/committees/
download.php/15071

Krafzig, D., Banke, K., Slama, D.: Enterprise SOA.
Service Oriented Architecture Best Practices, Prentice
Hall International, November 2004

Microsoft MSDN Developer Center – .NET Framework.
http://msdn2.microsoft.com/de-
de/netframework/default.aspx

OMG (Object Management Group): UML 2.0
Superstructure Specification. 2004

Parnas, D. L.: On the Criteria to Be Used in Decomposing
Systems into Modules. Communications of the ACM,
15, 9, Dezember 1972, S. 1053-1058

Reussner, R. Hasselbring, W.: Handbuch der Software-
Architektur. dpunkt.Verlag, 2006

Richter, J.-P.: Wann liefert eine serviceorientierte
Architektur echten Nutzen? Proceedings Software
Engineering 2005, Fachtagung des GI-Fachbereichs
Softwaretechnik, 8.-11.3.2005 in Essen, S. 231-242.

Richter, J.-P., Haller, H., Schrey, P.: Serviceorientierte
Architektur. Informatik-Spektrum, 28(5), Oktober
2005, 413-416

Shannon, B., Hapner, M., Matena, V.: Java 2 Platform,
Enterprise Edition. Addison Wesley 2000

Siedersleben, J.: SOA revisited: Komponentenorientierung
bei Systemlandschaften. Wirtschaftsinformatik 49
(2007) Sonderheft, S. 110-117

Simon, H. A: The Organization of Complex Systems,
Hierarchy Theory: The Challenge of Complex
Systems. In Howard H. Pattee (Editor): The
International Library of Systems Theory and
Philosophy, George Braziller, New York, 1993

Szyperski, C., Gruntz, D., Murer, S.: Component Software.
Beyond Object-Oriented Programming. Addison-
Wesley Longman, 2002

TOGAF The Open Group Architecture Framework
(TOGAF 8.1.1 'The Book'), The Open Group, 2006,
http://www.opengroup.org/architecture/

Voß, M., Hess, A., Humm, B. : Towards a Framework for
Large Scale Quality Architecture. In: Hofmeister, Ch.,
et.al. (Eds.): Perspectives in Software Quality - Short
Papers of the 2nd International Conference on the
Quality of Software Architectures (QoSA), Interner
Bericht 2006-10, Universität Karlsruhe, Fakultät für
Informatik.

W3C (World wide web consortium): Web services
architecture. http://www.w3.org/TR/ws-arch/

W3C (World Wide Web Consorium): Web Services
Description Language (WSDL). http://www.w3.org/
TR/wsdl

ICEIS 2008 - International Conference on Enterprise Information Systems

280

Woods, D.: Enterprise Services Architecture. SAP Press,
2004

Yourdon, E., L. Constantine, L. L.: Structured Design:
Fundamentals of a Discipline of Computer Program
and Systems Design. Prentice Hall, September 1986

Zachman, J. A.: A framework for information systems
architecture. IBM Systems Journal, Volume 26 , No.
3, IBM Corporation, 1987.

A METHOD FOR ENGINEERING A TRUE SERVICE-ORIENTED ARCHITECTURE

281

