Future work will focus on further research on
exploiting the aforementioned omni-directional
inference capability of Bayesian networks to the
prediction of the next event, as well as on comparing
ESIDE-Depian to other cutting-edge Intrusion
Detection Systems.
ACKNOWLEDGEMENTS
The authors would like to thank the Regional
Government of Biscay and the Basque Goverment
for their financial support.
REFERENCES
Alipio, P., Carvalho, P., Neves, J., 2003. Using CLIPS to
Detect Network Intrusion. Lecture Notes in Computer
Science, volume 2902/2003, pages 341-354, ISBN
0302-9743, Springer-Verlag.
Brugger, T., 2004. Data Mining Methods for Network
Intrusion Detection. PhD thesis. University of
California Davis.
Castillo, E., Gutierrez, J.M., Hadi, A. S., 1997. Expert
Systems and Probabilistic Network Models. ISBN: 0-
387-94858-9. Springer-Verlag.
Chavan, S., Shah, K., Dave, N., Mukherjee, S., Abraham,
A., Sanyal, S., 2004. Adaptative neuro-fuzzy intrusion
detection systems. Proceedings of the 2004
International Conference on Information Technology:
Coding and Computing, volume 1, pages 70-74.
Crothers, T., 2002. Implementing Intrusion Detection
Systems: A Hands-On Guide for Securing the
Network. ISBN 0764549499, John Whiley & Sons Inc.
Doyle, J., Kohane, I., Long, W., Shrobe, H., Szolovits, P.,
2001. Event recognition beyond signature and
anomaly. Proceedings of the 2001 IEEE Workshop on
Information Assurance and Security, pages 170-174.
Estevez-Tapiador, J., Garcia-Teodoro, P., Diaz-Verdejo,
J., 2003. Stochastic protocol modelling for anomaly
based network intrusion detection. Proceedings of the
first IEEE International Workshop on Information
Assurance, pages 3-12.
Ghahramani, Z., 1998. Learning Dynamic Bayesian
Networks. Lecture Notes in Computer Science,
volume 1387, page 168. Springer-Verlag.
Helmer, G., Wong, J., Honavar, V., Miller, L., Wang, Y.,
2003. Lightweight agents for intrusion detection.
Journal of Systems and Software, volume 67, pages
109-122.
Internet System Consortium, 2007. Internet Domain
Survey. July 2007. Available at http://www.isc.org/.
Kabiri, P., Ghorbani, A. A., 2005. Research on intrusion
detection and response: A survey. International
Journal on Information Security, volume 1(2), pages
84-102.
Kantzavelou, I., Katsikas, S., 1997. An attack detection
system for secure computer systems outline of the
solution. Proceedings of the IFIP TC11 13
th
International Conference on Information Security,
pages 123-135.
Kim, D., Nguyen, H., Park, J., 2005. Genetic algorithm to
improve svm-based network intrusion detection
system. Proceedings of the 19
th
International
Conference on Advanced Information Networking and
Applications (AINA), volume 2, pages 155-158.
Kruegel, C., Vigna, G., 2003. Anomaly detection of web-
based attacks. Proceedings of the 10
th
ACM
Conference on Computer and Communications
Security, pages 251-261.
Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava,
J., 2003. A comparative study of anomaly detection
schemes in network intrusion detection. Proceedings
of the SIAM International Conference on Data
Mining.
Lee, W., Stolfo, S., Chan, P., Eskin, E., Fan, W., Miller,
M., Hershkop, S., Zhang., J., 2001. Real time data
mining-based intrusion detection. Proceedings of the
second DARPA Information Survivability Conference
and Exposition, volume 1, pages 89-100.
Metasploit, 2006. Exploit research. Available at
http://www.metasploit.org/.
Mukkamala, S., Sung, A., Abraham, A., 2005. Intrusion
detection using an ensemble of intelligent paradigms.
Journal of Network and Computer Applications,
volume 28, pages 167-182.
Murphy, K., 2001. An introduction to graphical models.
Technical report. Intel Research, Intel Corporation.
Roesch, M. (1999). SNORT: Lightweight intrusion
detection for networks. Proceedings of LISA99: 13
th
Systems Administration Conference, pages 229-238.
Singhal, A., Jajodia, S., 2006. Data warehousing and data
mining techniques for intrusion detection systems.
International Journal on Information Security, volume
1(2), pages 149-166.
Snort, 2006. The facto standard for intrusion detection
and prevention. Available at http://www.snort.org/.
Spirtes, P., Glymour, C., Scheines, R., 2001. Causation,
Prediction, and Search, Second Edition. Adaptive
Computation and Machine Learning. The MIT Press.
Valdes, A., Skinner, K., 2000. Adaptive, model-based
monitoring for cyber attack detection. Proceedings of
RAID 2000, pages 80-92.
Vigna, G., Eckman, S., Kemmerer, R., 2000. The STAT
tool suite. Proceedings of the DARPA Information
Survivability Conference and Exposition 2000, volume
2, page 1046. IEEE Press.
BAYESIAN-NETWORKS-BASED MISUSE AND ANOMALY PREVENTION SYSTEM
69