Demsar, U. (2006). Data Mining of Geospatial Data:
Combining Visual and Automatic Methods.
Stockholm: Royal Institute of Technology (KTH).
desJardins, M., MacGlashan, J., & Ferraioli, J. (2007 ).
Interactive Visual Clustering. Proceedings of the 12th
international conference on Intelligent user interfaces
(pp. 361 - 364 ). Honolulu, Hawaii, USA : ACM Press
Gahegan, M., & Brodaric, B. (2002). Computational and
Visual Support for Geographical Knowledge
Construction: Filling in the gaps between exploration
and explanation. Advances in Spatial Data Handling,
Proceedings of the 10th International Symposium on
Spatial Data Handling.
Guo, D., Chen, J., MacEachren, A. M., & Liao, K. (2006).
A Visual Inquiry System for Space-Time and
Multivariable Patterns (VIS-STAMP). Transactions on
Visualization and Computer Graphics , 12 (6), 1461-
1474.
Guo, D., Gahegan, M., MacEachren, A. M., & Zhou, B.
(2005). Multivariate Analysis and Geovisualization
with Integrated Geographic Knowledge Discovery
Approach. Cartography and Geographic Information
Science , 32 (2), 113-132.
Guo, D., Peuquet, D. J., & Gahegan, M. (2003). ICEAGE:
Interactive Clustering and Exploration of Large and
High-Dimensional Geodata. GeoInformatica (pp. 229-
253). The Nertherlands: Kluwer Academic Publishers.
Hoffman, P. (1999). Table Visualization: A Formal Model
and Its Applications (PhD Thesis). Lowell LA, USA:
University of Massachusetts Lowell.
Ibrahim, L. F. (2005). Using Clustering Algorithm CWSP-
PAM for Rural Network Planning. Third International
Conference on Information Technology and
Applications (ICITA'05) (pp. 280-283). Sydney: IEEE
Computer Society.
Imrich, P., Mueller, K., Mugno, R., Imre, D., Zelenyuk,
A., & Zhu, W. (2002). interactive Poster:Visual Data
Mining with the Interactive Dendogram. Information
Visualization Symposium.
Inselberg, A. (1985). The plane with parallel coordinates.
Visual Computer , 1 (4), 69-81.
Jiang, B. (2004). Spatial Clustering for Mining Knowledge
in Support of Generalization Process in GIS. ICA
Workshop on Generalisation and Multiple
Representation. Leicester, United Kingdom.
Kaufman, L., & Rousseeuw, P. (1990). Finding Groups in
Data: An Introduction to Cluster Analysis. John Wiley
& Sons.
Kantardzic, M. (2003). Data Mining: Concepts, Models,
Methods, and Algorithms. Danvers, MA, USA: John
Wiley & Sons.
Keim, D. A. (2002). Information Visualization and Visual
Data Mining. IEEE Transactions on Visualization and
Computer Graphics , 100-1007.
Kriegel, H.-P., Kunath, P., Pfeifle, M., & Renz, M. (2006).
ViEWNet: Visual Exploration of Region-Wide Traffic
Networks. Data Engineering, 2006. ICDE '06.
Proceedings of the 22nd International Conference on
(pp. 166-166). Atlanta, USA: IEEE Computer Society.
Koua, E. L., MacEachren, A., & Kraak, M.-J. (2006).
Evaluting the usability of visualization methods in an
exploratory geovisualization environment.
International Journal of Geographical Information
Science , 20 (4), 425-448.
Liu, W., Seto, K. C., & Sun, Z. (2005). Urbanization
Prediction with ART-MMAP Neural Network Based
Spatial-Temporal Data Mining Method. 5th
International Symposium Remote Sensing of Urban
Area (URS 2005), XXXVI. Tempe, AZ, USA.
May, M., & Savinov, A. (2004). SPIN! AN ENTERPRISE
ARCHITECTURE FOR DATA MINING AND
VISUAL ANALYSIS OF SPATIAL DATA. In B.
Kovalerchuk, & J. Schwing, Visual and Spatial
Analysis (pp. 293-317). Dordrecht, The Nertherlands:
Springer.
Nam, E. J., Han, Y., Mueller, K., Zelenyuk, A., & Imre, D.
(2007). ClusterScultor: A Visual analytics Tool for
High-Dimensional Data. IEEE Symposium on Visual
Analytics Science and Technology 2007 . Sacramento,
CA.
Ng, R. T., & Han, J. (2002). CLARANS: A Method for
Clustering Objects for Spatial Data Mining. IEEE
Transaction on Knowledge and Data Enginnering , 14
(5), 1003-1016.
Ng, R. T., & Han, J. (1994). Efficient and Effective
Clustering Methods for Spatial Data Mining. 20th
VLDB Conference. Santiago, Chile.
Schulz, H.-J., Nocke, T., & Schumann, H. (2006). A
Framework of Visual Data Mining of Structures. 29th
Australasian Computer Science Conference (pp. 157-
166). Hobart, Australia: Australian Computer Society,
Inc.
Tung, A. K., Hou, J., & Han, J. (2001). Spatial Clustering
in the Presence of Obstacles. 17th International
Conference on Data Engineering (ICDE'01).
washington, DC, USA: IEEE Computer Society.
Torun, A., & Duzgun, S. (2006). Using Spatial Data
Mining Techniques to Reveal Vulnerability of People
and Places Due to Oil Transportation and Accidents: A
Case Study of Istanbul Strait. Proceedings of the
ISPRS Vienna 2006 Symposium, (pp. 43-48). Vienna.
Wan, L.-H., Li, Y.-J., Liu, W.-Y., & Zhang, D.-Y. (2005).
Application and Study of Spatial Cluster and
Customer Partitioning. Fourth International
Conference on Machine Learning and Cybernetics (pp.
1701-1706). Guangzhou: IEEE.
Wang, X., & Hamilton, H. (2005). Clustering Spatial Data
in the Presence of Obstacles. International Journal on
Artificial Intelligence , 14, 177-198.
Zhang, X., Wang, J., & Wu, F. (2006). Spatial Clustering
with Obstacles Constraints Based on Genetic
Algorithms and K-Medoid. IJCSNS International
Journal of Computer Science and Network Security , 6
(10), 109-114.
ICEIS 2008 - International Conference on Enterprise Information Systems
86