AN APPROXIMATE PROPAGATION ALGORITHM FOR PRODUCT-BASED POSSIBILISTIC NETWORKS

Amen Ajroud, Mohamed Nazih Omri, Salem Benferhat, Habib Youssef

2008

Abstract

Product-Based Possibilistic Networks appear to be important tools to efficiently and compactly represent possibility distributions. The inference process is a crucial task to propagate information into network when new pieces of information, called evidence, are observed. However, this inference process is known to be a hard task especially for multiply connected networks. In this paper, we propose an approximate algorithm for product-based possibilistic networks. More precisely, we propose an adaptation of the probabilistic approach “Loopy Belief Propagation” (LBP) for possibilistic networks.

References

  1. Ben Amor, N. (2002). Qualitative possibilistic graphical models : from independence to propagation algorithms. Thèse de doctorat, Université de Tunis, ISG.
  2. Ben Amor, N., Benferhat, S., & Mellouli, K. (2003) Anytime Propagation Algorithm for Min-based Possibilistic Graphs. Soft Computing, A fusion of foundations, methodologies and applications, 8, 150-161.
  3. Benferhat, S., & Smaoui, S. (2007). Possibilistic Causal Networks for Handling Interventions: A New Propagation Algorithm. The Twenty-Second AAAI Conference on Artificial Intelligence (AAAI'07), pp.373-378.
  4. Bishop, C. M., (2006). Pattern Recognition and Machine Learning. Springer.
  5. Borgelt, C., Gebhardt, J., & Kruse, R. (1998). Possibilistic graphical models. Proceedings of International School for the Synthesis of Expert Knowledge (ISSEK'98), pp.51-68.
  6. Cooper, G. F. (1990). Computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, pp.393-405.
  7. Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60, 141-153.
  8. Dubois, D., & Prade, H. (1988). Possibility theory : An approach to computerized, Processing of uncertainty. Plenium Press, New York.
  9. Fonck, P. (1994). Réseaux d'inférence pour le raisonnement possibiliste. PhD thesis, Université de Liège, Faculté des Sciences.
  10. Gebhardt, J., & Kruse, R. (1997). Background and perspectives of possibilistic graphical models, Qualitative and Quantitative Practical Reasoning (ECSQARU/FAPR'97), pp.108-121.
  11. Guo, H., & Hsu, W. (2002). A survey of algorithms for realtime Bayesian network inference, Joint Workshop on Real-Time Decision Support and Diagnosis Systems (AAAI/KDD/UAI-2002), pp.1-12.
  12. Heskes, T. (2003). Stable fixed points of loopy belief propagation are minima of the Bethe free energy. Advances in Neural Information Processing Systems, 15, 359- 366.
  13. Jaakkola, T.S., & Jordan, M.I. (1999). Variational probabilistic inference and the qmr dt network. Journal of Artificial Intelligence Research, 10, 291-322.
  14. Kruse, R., & Gebhardt, J. (2005). Probabilistic Graphical Models in Complex Industrial Applications. Fifth International Conference on Hybrid Intelligent Systems (HIS'05), p.3.
  15. Murphy, K. P., Weiss, Y., & Jordan, M. I. (1999). Loopy belief propagation for approximate inference: An empirical study. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI'99), pp.467-475,
  16. Pearl, J. (1986). Fusion, propagation and structuring in belief networks. Artificial Intelligence, 29, 241-288.
Download


Paper Citation


in Harvard Style

Ajroud A., Nazih Omri M., Benferhat S. and Youssef H. (2008). AN APPROXIMATE PROPAGATION ALGORITHM FOR PRODUCT-BASED POSSIBILISTIC NETWORKS . In Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8111-37-1, pages 321-326. DOI: 10.5220/0001711403210326


in Bibtex Style

@conference{iceis08,
author={Amen Ajroud and Mohamed Nazih Omri and Salem Benferhat and Habib Youssef},
title={AN APPROXIMATE PROPAGATION ALGORITHM FOR PRODUCT-BASED POSSIBILISTIC NETWORKS},
booktitle={Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2008},
pages={321-326},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001711403210326},
isbn={978-989-8111-37-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - AN APPROXIMATE PROPAGATION ALGORITHM FOR PRODUCT-BASED POSSIBILISTIC NETWORKS
SN - 978-989-8111-37-1
AU - Ajroud A.
AU - Nazih Omri M.
AU - Benferhat S.
AU - Youssef H.
PY - 2008
SP - 321
EP - 326
DO - 10.5220/0001711403210326