AN APPROXIMATE PROPAGATION ALGORITHM FOR PRODUCT-BASED POSSIBILISTIC NETWORKS
Amen Ajroud, Mohamed Nazih Omri, Salem Benferhat, Habib Youssef
2008
Abstract
Product-Based Possibilistic Networks appear to be important tools to efficiently and compactly represent possibility distributions. The inference process is a crucial task to propagate information into network when new pieces of information, called evidence, are observed. However, this inference process is known to be a hard task especially for multiply connected networks. In this paper, we propose an approximate algorithm for product-based possibilistic networks. More precisely, we propose an adaptation of the probabilistic approach “Loopy Belief Propagation” (LBP) for possibilistic networks.
References
- Ben Amor, N. (2002). Qualitative possibilistic graphical models : from independence to propagation algorithms. Thèse de doctorat, Université de Tunis, ISG.
- Ben Amor, N., Benferhat, S., & Mellouli, K. (2003) Anytime Propagation Algorithm for Min-based Possibilistic Graphs. Soft Computing, A fusion of foundations, methodologies and applications, 8, 150-161.
- Benferhat, S., & Smaoui, S. (2007). Possibilistic Causal Networks for Handling Interventions: A New Propagation Algorithm. The Twenty-Second AAAI Conference on Artificial Intelligence (AAAI'07), pp.373-378.
- Bishop, C. M., (2006). Pattern Recognition and Machine Learning. Springer.
- Borgelt, C., Gebhardt, J., & Kruse, R. (1998). Possibilistic graphical models. Proceedings of International School for the Synthesis of Expert Knowledge (ISSEK'98), pp.51-68.
- Cooper, G. F. (1990). Computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, pp.393-405.
- Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60, 141-153.
- Dubois, D., & Prade, H. (1988). Possibility theory : An approach to computerized, Processing of uncertainty. Plenium Press, New York.
- Fonck, P. (1994). Réseaux d'inférence pour le raisonnement possibiliste. PhD thesis, Université de Liège, Faculté des Sciences.
- Gebhardt, J., & Kruse, R. (1997). Background and perspectives of possibilistic graphical models, Qualitative and Quantitative Practical Reasoning (ECSQARU/FAPR'97), pp.108-121.
- Guo, H., & Hsu, W. (2002). A survey of algorithms for realtime Bayesian network inference, Joint Workshop on Real-Time Decision Support and Diagnosis Systems (AAAI/KDD/UAI-2002), pp.1-12.
- Heskes, T. (2003). Stable fixed points of loopy belief propagation are minima of the Bethe free energy. Advances in Neural Information Processing Systems, 15, 359- 366.
- Jaakkola, T.S., & Jordan, M.I. (1999). Variational probabilistic inference and the qmr dt network. Journal of Artificial Intelligence Research, 10, 291-322.
- Kruse, R., & Gebhardt, J. (2005). Probabilistic Graphical Models in Complex Industrial Applications. Fifth International Conference on Hybrid Intelligent Systems (HIS'05), p.3.
- Murphy, K. P., Weiss, Y., & Jordan, M. I. (1999). Loopy belief propagation for approximate inference: An empirical study. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI'99), pp.467-475,
- Pearl, J. (1986). Fusion, propagation and structuring in belief networks. Artificial Intelligence, 29, 241-288.
Paper Citation
in Harvard Style
Ajroud A., Nazih Omri M., Benferhat S. and Youssef H. (2008). AN APPROXIMATE PROPAGATION ALGORITHM FOR PRODUCT-BASED POSSIBILISTIC NETWORKS . In Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8111-37-1, pages 321-326. DOI: 10.5220/0001711403210326
in Bibtex Style
@conference{iceis08,
author={Amen Ajroud and Mohamed Nazih Omri and Salem Benferhat and Habib Youssef},
title={AN APPROXIMATE PROPAGATION ALGORITHM FOR PRODUCT-BASED POSSIBILISTIC NETWORKS},
booktitle={Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2008},
pages={321-326},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001711403210326},
isbn={978-989-8111-37-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - AN APPROXIMATE PROPAGATION ALGORITHM FOR PRODUCT-BASED POSSIBILISTIC NETWORKS
SN - 978-989-8111-37-1
AU - Ajroud A.
AU - Nazih Omri M.
AU - Benferhat S.
AU - Youssef H.
PY - 2008
SP - 321
EP - 326
DO - 10.5220/0001711403210326