
GREEN COMPUTING
A Case for Data Caching and Flash Disks?

Karsten Schmidt, Theo Härder, Joachim Klein and Steffen Reithermann
University of Kaiserslautern, Gottlieb-Daimler-Str., 67663 Kaiserslautern, Germany

Keywords: Flash memory, flash disks, solid state disk, data caching, cache management, energy efficiency.

Abstract: Green computing or energy saving when processing information is primarily considered a task of processor
development. However, this position paper advocates that a holistic approach is necessary to reduce power
consumption to a minimum. We discuss the potential of integrating NAND flash memory into DB-based ar-
chitectures and its support by adjusted DBMS algorithms governing IO processing. The goal is to drastically
improve energy efficiency while comparable performance as is disk-based systems is maintained.

1 INTRODUCTION

Recently, green computing gained a lot of attention
and visibility also triggered by public discussion
concerning global warming due to increased CO2
emissions. It was primarily addressed by enhanced
research and development efforts to reduce power
usage, heat transmission, and, in turn, cooling needs
of hardware devices, in particular, processor chips
using extensive hardware controls. Thermal
management, however, is a holistic challenge. It
includes not only simultaneous optimizations in the
materials, devices, circuits, cores, and chip areas, but
also combined efforts regarding system architecture
(e.g., integration of more energy-efficient storage
devices), system software (e.g., energy-optimal
application of algorithms), and system management
(e.g., a control center responding to workload
changes by allocating/deactivating entire servers). In
the area of database management systems (DBMSs),
up-to-date little research work has contributed to this
important overall goal. But, NAND flash memory
(also denoted as solid state disk) seems to have the
potential to become the future store for permanent
database data, because – compared to magnetic disks
(disk, for short) – it promises breakthroughs in
bandwidth (IOps), energy saving, reliability, and
volumetric capacity (Gray and Fitzgerald, 2007).

So far, flash memory was considered ideal for
storing permanent data in embedded devices,
because it is energy efficient, small, light-weight,
noiseless, and shock resistant. So, it is used in
personal digital assistants (PDAs), pocket PCs, or

digital cameras and provides the great advantage of
zero-energy needs, when idle or turned off. In these
cases, flash use could be optimally configured to
typical single-user workloads known in advance.
However, not all aspects count for DB servers and
not all DBMS algorithms can be directly applied
when processing data on flash.

2 NAND FLASH-BASED DISKS

Because NAND flash memory is non-volatile,
allows for sequential and random block reads/writes,
and keeps its state even without energy supply, it
can be compared to disks and can take over the role
of disks in server environments. Therefore, we call
such storage units NAND flash-based disks or flash,
for short. To evaluate their potential when mapping
DB data to such devices, we briefly sketch – for
DBMS use – the typical read/write model of disk
and flash.

2.1 Read/Write Models

Disks are devices enabling very fast sequential block
reads and, at the same time, equally fast writes,
whereas random block read/writes are much slower
(requiring substantial “mechanical time fractions”).
The block size can be configured to the needs of the
DBMS application with page sizes typically ranging
between 4KB and 64KB. To hide the access gap be-
tween memory and disk, DBMS use a large DB
cache in memory (RAM) where (in the simplest

535
Schmidt K., Härder T., Klein J. and Reithermann S. (2008).
GREEN COMPUTING - A Case for Data Caching and Flash Disks?.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 535-540
DOI: 10.5220/0001725805350540
Copyright c© SciTePress

case) each cache frame can keep a DB page which,
in turn, can be mapped to a disk block. In most
DBMSs, propagation of DB pages follows the
update-in-place principle applying WAL (Gray and
Reuter, 1993).

Flash storage is divided into m equal blocks typi-
cally much larger than DB pages. A flash block nor-
mally contains b (32 – 128) fixed-size pages where a
page ranges between 512B and 2KB. Because zeros
cannot be directly written to a page, one must erase
(reset) the block to all 1’s, before a page can be writ-
ten. Thus, a written page cannot be updated
anymore, but only freshly written after the entire
block is erased again. Hence, the block is the unit of
erasure automatically done by the flash device when
allocating an empty block. The page is the smallest
and the block the largest unit of read whereas the
page is the unit of write; using chained IO, the
DBMS, however, can write 1 < i ≤ b pages into a
block at a time. Note, whenever a page is written in-
place, the flash device automatically allocates a new
block and moves to it all pages from the old block
together with the updated page (keeping a cluster
property). This wear leveling (Ban, 2004) is entirely
transparent to the client, i.e., the DBMS, such that
all references to displaced pages, e.g., index pointers
and other links, remain valid.

Another concern called write endurance and of-
ten cited in the literature is the limited number of
erase cycles, between 100,000 (older references) and
5,000,000 (most recent references). When a block
reaches this erase cycle limit, it cannot be longer
used and has to be marked as corrupted. Hence,
management of flash relies on a pool of spare
blocks; due to the application of wear leveling
overly frequent overwriting of the same block is
avoided.

2.2 Flash Potential

To gain a deeper and more complete comparative
picture of disk and flash, we want to outline the
differences and advantages for IO, power, size, and
price of both device types and indicate where drastic
processing improvements and costs can be
anticipated. Here, we can only summarize the
evaluation of others (Gray and Fitzgerald, 2007,
Nath and Kansal, 2007) in a coarse way and give
indicative numbers or orders of magnitude of gains
or degradations. Of course, this discussion assumes
that DBMS algorithms provide adjusted mappings to
take full advantage of the flash potential. For the
performance figures, we assume what technology

currently provides for fast disks (e.g., SCSI 15k
rpm) and flash (SAMSUNG 2008).

IO performance: We distinguish different forms
of IO processing: Sequential IO continuously reads/
writes blocks to the device whereas random IO can
be directly performed to/from any given block
address.

Sequential reads and writes on flash having a
bandwidth of ~90 MBps are comparable to those on
fast disks.

• Sequential reads and writes on flash having a
bandwidth of ~90 MBps are comparable to
those on fast disks.

• Random reads on flash are spectacularly faster
by a factor of 10–15 (2800 IOps compared to
<200 IOps).

• Random writes, requiring block erasure first,
perform worst with ~27 IOps and are slower
by a factor of 4–8 compared to disks.

Hence, dramatic bandwidth gains are obtained
for random reads while random writes are
problematic and have to be algorithmically
addressed at the DBMS side.

Energy consumption: The power needed to drive
a flash read/write is 0.9 Watt and, hence, by a factor
of >15 lower than for a disk. Using the figures for
IOps, we can compute IOps/Watt as another
indicator for energy-saving potential. Hence, 3,100
flash-reads and 30 flash-writes can be achieved per
Watt, whereas a disk only reaches 13 operations per
Watt.

Unit size: Starting in 1996, NAND flash chips
doubled their densities each year and currently pro-
vide 64 Gbit. According to Hwang (2006), this
growth will continue or accelerate such that 256
GByte per chip are available in 2012. Because sever-
al of these chips can be packaged as a “disk”, the
DB community should be prepared for flash drives
with terabyte capacity in this near future. Hwang
(2006) also expects the advent of 20 TByte flash
devices in 2015. Of course, disks will also reach a
comparable capacity, but flash drives will provide
further important properties, as outlined in Section 1.

Price per unit: Today, flash is quite expensive. A
GByte of flash memory amounts to 20$, but technol-
ogy forecast predicts a dramatic decrease to only 2$/
GByte in the near future. Therefore, Gray and
Fitzgerald (2007) expect that disk and flash of
comparable capacity will have roughly the same
price (e.g., ~500$ for an SCSI and ~400$ for a flash
drive). This assumption allows us to compute IOps/$
as an additional measure of comparison. While
flash-read gets 7.0 IOps/$, flash-write gets poor 0.07
and an SCSI operation 0.5 IOps/$. Hence, using

ICEIS 2008 - International Conference on Enterprise Information Systems

536

flash, we achieve for the same amount of money 14
times more reads, but only 1/7 of writes compared to
disks.

This evaluation revealed even for a DBMS a
large optimization potential when its processing
characteristics can be adjusted in a way that the
drawbacks are avoided and, at the same time, the
strengths of flash is exploited as far as possible.
Here, we want to explore the energy-saving potential
of DBMSs, in particular, when data caching is used
together with flash as permanent storage.

3 DB CACHE MANAGEMENT

Caching plays a dominant role in all DB-based
applications and its importance steadily grows with
the number of Internet applications. In current
DBMSs, the overall goal of cache management is to
exploit locality of reference as far as possible
thereby minimizing IO to the permanent DB on disk.
When a requested page is not found in the cache, a
page fault occurs. If a free frame is found in the
cache, this page can be directly loaded from disk.
Otherwise, a page replacement algorithm determines
a “victim” to make room for the request. If the
victim page is marked as updated, loading has to be
deferred until this page is written (flushed) to the
disk. To reduce such wait situations, the cache
manager often gives such modified pages a
preferential treatment and flushes them asynchro-
nously (without being evicted) to make them again
“clean” in the cache.

Most of the prominent page replacement algo-
rithms, e.g., LRD (Effelsberg and Härder, 1984) or
LRU-K (O’Neil et al., 1993), proven in disk-based
DB applications, concentrate on single-page selec-
tions and are not flash-aware, because they do not
consider the asymmetric cost of read and write or
even the potential of multi-page fetches, e.g., an en-
tire block content, which can be helpful as a kind of
prefetching for specific workloads.

With flash, single-page flush optimization or vic-
tim determination is contra-productive. As a general
principle, output should be absolutely minimized,
potentially at the expense of input. Because writes
need special handling and are, therefore, much more
expensive than reads, page replacement should bias
the eviction of read-only pages over modified pages
which should be collected, before they are flushed.
Ideally such a collection should fill a block on flash.

Figure 1: Logical-to-physical data mapping.

If there is no restriction on page types to be col-
lected for flash mapping, a single cache is sufficient.
However, if the flash is organized in type-specific
files, this can be best achieved by type-specific
caches controlled by a multi-cache manager, which
only flushes complete blocks. To isolate update
propagation from logging and recovery concerns,
e.g., transaction-specific force-writes at commit, a
no-force strategy is mandatory for modified pages
(Gray and Reuter, 1993). A no-steal policy for dirty
pages, i.e., pages modified by still running
transactions, is not required, as long as the WAL
principle is observed. Note, there is an important
dependency between data cache flushes and log
buffer writes (see Section 4.2).

Preliminary results show that flash-aware re-
placement using a single cache cannot support most
workloads well. For scenarios sketched in Section 4,
multi-cache management may outperform a single
common LRU- or LRD-based cache by a substantial
margin (e.g., more than a factor of 2).

4 MAPPING SCENARIOS

Flash-aware cache algorithms must address the IO
asymmetry when performing writes and reads. First,
let’s look at the physical mapping of flash pages.
Figure 1 illustrates that the flash can be divided into
several files whose blocks may be either randomly
written (e.g., for user and index data) or filled in a
circular fashion (e.g., for log data). Consecutive data
pages are often mapped to the same block whereas
index pages are typically dispersed across several
blocks. As an additional degree of freedom, the DB
page size can be chosen as a multiple of the flash
page size. Thus, a DB page is mapped to one or
more consecutive flash pages, which, in turn, sets
two major goals for DB page writing:

Block n

Flash

RR
circular log

Data
record

i equal-sized
 flash pages
 in block n

Block 0

Index pages Consecutive data pages

GREEN COMPUTING - A Case for Data Caching and Flash Disks?

537

Figure 2: Out-buffering of pages.

1. Avoid expensive erasure by using always empty
blocks for page writing.

2. Flush collections of modified pages such that
new blocks are filled without fragmentation.
To achieve the first goal, writing single or few

pages (chained IO) always into a new block causes
tremendous fragmentation in this block. At the end,
most of the blocks are poorly filled, read
performance degrades, and flash capacity is wasted.
Therefore, goal 2 prefers to buffer DB pages for
output (out-buffer, for short) to fill flash blocks
completely. Indeed, this avoids fragmentation as
long as enough empty blocks are available to
propagate new or modified data. But pages being
relocated into new blocks leave gaps in their old
blocks causing fragmentation and later garbage
collection. Hence, replacement must balance both
extremes to minimize overall writing.

Due to different DB page types for indexes, data
(often chained), log, and temporary data (used for
external sort and intermediate results), the
propagation strategy decides whether it is better to
assign to a block (rather) static together with
(highly) dynamic pages or to separate them. From an
application point of view, the context of related user
data should not be destroyed due to page update
propagation to preserve locality of data reference.
On the other hand, maintaining the original block
assignment of data may be overly expensive due to
read/write asymmetry. To achieve reasonable page
mapping with minimum fragmentation and maximal
locality support, different out-buffering strategies
(block-building) are possible.

4.1 Propagation Strategies

Figure 2 sketches strategies for out-buffering modi-
fied DB pages before flushing them to blocks.

• In-place: Substituting each page in-place
avoids fragmentation at all, but requires each

time the entire flash block to be erased and
rewritten with all existing data.

Table 1: Comparison for propagation strategies.

Strategy single page
writ e

multiple page
write (same

type)

multiple page
write (mixed

types)

in place - | - | + - | - | + - | - | +
relocate o | o | + o | o | + o | o | +
new block + | + | - + | + | o o | + | o

performance | power consumption | fragmentation
- poor o average + good

• Relocate: Shifting a page to a new physical

position leaves a gap (outdated page) in the
present block, but the page can be out-
buffered together with other pages (even
unmodified pages) to be written into another
block.

• Allocate new block: When an empty block is
used to be filled with new or modified pages,
the block can be written by chained IO which
is much more efficient than separate page
flushes.

To summarize these ideas, Table 1 shows the
anticipated performance, power consumption, and
degree of fragmentation for single-page and out-
buffered- page flushes. The combination of different
page types to build blocks is disadvantageous for
sequential data being spread over more blocks than
necessary when being read later. Table 1 also reveals
that the straightforward and easy to use in-place
strategy does not perform well in most of the
considered aspects. Depending on DBMS
requirements, different propagation strategies favor
different design goals (e.g., power, time, cost,
space); cost-based decisions may choose the best
strategy even on demand.

4.2 Mapping Data to Flash

So far, we have characterized the general properties
and principles of mapping cached data to flash. For
that purpose, Gal and Toledo (2005) already present-
ed lower-level algorithms. To become more DB-spe-
cific in our position paper, we propose in the follow-
ing how the mapping can be applied to important
DBMS processing situations and workloads:

Log data: The properties of collecting and writ-
ing log data lend themselves perfectly to flash sup-
port. The log file is organized in a circular way and
new log data is always appended to the current end
of the log file which makes the log tail to a high-
traffic data element. Because flash blocks are rather
large, they normally are not filled by the log data of

Index page
 modified
Data page
 modified

Out-Buffer Cache

1)

2)

3)

4)

5)
Block

ICEIS 2008 - International Conference on Enterprise Information Systems

538

a single transaction. However, repeated log writes of
consecutively committing transactions to the same
block would cause a performance-critical bottleneck.
Therefore, a pool of block-size log buffers should be
allocated, which are alternately used to enable filling
of log data while a full block (using chained IO) is
asynchronously written to flash. For this purpose,
the concept of group commit was developed for
which the log data are written in commit sequence
(at least the end-of-transaction entries) to the log.
The successful commit is acknowledged to the user
together with the release of all locks kept by the
committed transactions when the log data has
reached stable storage (e.g., flash). If the delayed
lock release is a performance problem, group
commit can be combined with pre-commit (see Gray
and Reuter, 1993) which immediately releases locks
at the end of the individual transaction Ti although
the log data is still in a volatile state. The only
situation that such a transaction may still fail is a
crash. But then all pre-committed (and other
running) transactions potentially dependent on the
updates of this transaction (because of early lock
release) also fail because their log data appear after
the log data of Ti.

Static user data: DB pages containing user data
are primarily read and rarely updated, hence, almost
static. In many cases, the physical allocation of DB
pages on external media is of particular importance,
e.g., if a cluster property has to be preserved. For
that reason, data pages should be updated in-place as
in disk-based systems, i.e., n single-page updates re-
quire n block writes. Note, wear leveling does not
affect the cluster property at the block level, because
random page reads are not sensitive to physical
neighbourhood of blocks. Hence, management of
DB pages within a block provides new opportunities
to reallocate data on flash without loosing
performance.

Append-on data: User data is often appended to
the end of a file by using sequential numbering
scheme for primary keys or to ordered XML trees
which are right-growing when new order-dependent
data is attached. In this case, the usage of a pool of
block-size buffers, similar to that for log data, can
dramatically improve the performance.

Dynamic user data: In such a scenario, page up-
dates are assumed to be so frequent that block
update in-place is too expensive because of a
substantial number of single-page writes and, in
turn, energy consumption. Therefore, we sacrifice
the cluster property (automatically preserved for in-
place block updates by the flash) and propose a

Figure 3: DBMS-controlled mapping to flash.

DBMS-controlled relocation, as illustrated in Figure
3. Modified pages are out-buffered until an entire
block can be written. Administration information in
the form of block info and page mapping is
maintained by the DBMS and remains in memory.
To enable recovery from a crash, the DBMS saves
sufficient redundancy in a log file. Hence, if a flash
block can store d DB pages, DBMS-controlled
relocation reduces the write overhead of n pages to
n/d block writes.

Index data: Index maintenance provides similar
update frequencies as dynamic user data and, there-
fore, we propose a similar DBMS-controlled
mapping (Figure 3). A first prototype of flash-aware
index algorithms was developed by Nath and Kansal
2007, where memory had to cope with severe size
restrictions. Although they omitted scalability
considerations, they emphasized the need for
flexible index maintenance to reduce expensive
write operations. Due to the frequent but small
changes within an index node, it is better to collect
corresponding log information for that node update
instead of flushing every single modification
separately. Moreover, index traversals accessing
single dispersed pages profit from the random-read
speed of the flash. Other B*-tree operations, such as
merge and split, may be deferred or covered by the
same logging mechanism.

Hot spots: A critical task is the management of
data which is updated with a high repetition rate
(hot-spot data). The use of NAND flash implies the
need of an adjusted approach. Due to their high
locality of reference, the cache manager would never
evict them for replacement in case of a no-force
policy. The normal logging component is used to
collect the needed redundancy to guarantee the
ACID properties in case of a crash. To enable reuse
of the log space, hot-spot data must eventually reach
the stable storage. Therefore, a checkpointing

Flash

Assignment

Cache Out-Buffer

4. Maintain
 page mapping
 & block info

Page mapping

…

1. Load

2. Modify & Buffer
3. Flush

Block info

Page no.
0
n0 1 2 3

dy st st dy
… …

Type Flash addr.
-

…II0I0 IIIIII IIIIII 0I0I0 234 582 32 491 n
0 1 2 3 i Block no.

GREEN COMPUTING - A Case for Data Caching and Flash Disks?

539

mechanism should be applied to periodically flush
hot-spot pages using the normal out-buffer method.

4.3 Further Optimization Options

The forms of mapping and their effectivity/energy-
saving potential discussed so far could be further en-
hanced by a number of optional methods.

Workload analysis: To optimize the read/write
ratio, the cache manager may predict access patterns
or pro-actively tolerate performance degradations to
gain additional benefit for later read operations. For
example, flushing sequentially referenced pages im-
mediately may increase current write costs. But, be-
cause re-reference probability is very low such that
the cache space freed may amortize the initial
writing costs. Besides reducing gaps in existing
blocks, a suitable propagation strategy compares
write and read operations within a workload for a
specific page type or each page individually. Hence,
the cache manager has to distinguish between page
types and their future usage.

Database design: Defining a flash-aware DB
schema should reduce index usage or redundant data
structures, because updates would affect too many
pages. A higher amount of data to read, even for se-
lective accesses or joins, may compensate the other-
wise unacceptable update costs for such redundant
data.

Replacement urgency: Regarding power con-
sumption and latency for write compared to a read
operation, the cache may prefer to eagerly drop non-
modified pages. Indeed, modified pages may benefit
from a deferred flush, as long as WAL is used and
data consistency is assured. Thus, a page may be
replaced containing modifications from several
transactions resulting in one instead of multiple
block writes (no-force policy).

5 SUMMARY AND OUTLOOK

We outlined the specific properties of NAND flash
when used as persistent devices in DB servers. Al-
though magnetic disks with salient and proven
performance and reliability properties and, above all,
acceptable capacities (512GByte and larger) will be
available on the market, flash disks may provide
even superior properties in the near future. The
dramatic reduction of energy consumption and the
potential to read random data nearly as fast as
sequential data are outstanding advantages which
make NAND flash memory to an almost perfect
hard disk alternative. Because of the problematic

erase operation of flash blocks, DBMS algorithms
and, above all, the mapping between cache memory
and flash disk have to be adjusted to reach the best
performance possible. We illustrated the op-
portunities and draw-backs of various mapping sce-
narios and developed ideas for optimization.
Primarily, the collection of data pages in block-size
memory buffers may greatly improve the
performance.

Currently, we are working on the integration of
flash memory into a DBMS and its adaptation
providing a flash-aware cache together with
enhanced mapping algorithms. Other hot topics for
the improvement of energy efficiency in DBMSs is
the use of specialized logging techniques and group
commit as well as cost-based query optimization
regarding energy consumption as a prime cost
factor.

REFERENCES

Ban, A., 2004. Wear leveling of static areas in flash
memory. US patent, (6732221); Assigned to M-
Systems

Effelsberg, W., and Härder, T., 1984. Principles of
Database Buffer Management. In ACM Transactions
on Database Systems 9(4): 560-595

Gal, E., and Toledo, S., 2005. Algorithms and data
structures for flash memories. In Computing Surveys
37(2): 138-163

Gray, J., and Fitzgerald, B., 2007. FLASH Disk
Opportunity for Server-Applications. http://research
.microsoft.com/ ~Gray/papers/FlashDiskPublic.doc

Gray, J., and Reuter, A., 1993. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann

Härder, T., and Reuter, A., 1983. Principles of
Transaction-Oriented Database Recovery. In
Computing Surveys 15(4): 287-317

Hwang, C., 2006. Chip memory to keep doubling annually
for 10 years: Hwang. http://www.korea.net/
News/news/LangView.asp?serial_no=20060526020&
lang_no=5&part= 106&SearchDay= (2006)

Kerekes, Z., 2007. (editor of STORAGEsearch.com): SSD
Myths and Legends – "write endurance".
http://www.storagesearch.com/ssdmyths-
endurance.html

Nath, S., and Kansal, A., 2007. FlashDB: Dynamic Self-
tuning Database for NAND Flash. ftp.research.mi-
crosoft.com/pub/tr/TR-2006-168.pdf

O’Neil, E. J., O’Neil, P. E., and Weikum, G.: The LRU-K
Page replacement algorithm for database disk buffer-
ing. Proc. ACM SIGMOD, 297-306 (1993)

SAMSUNG Develops, 2008. MLC-based 128 Gigabyte,
SATA II Solid State Drive. http://www.samsung.com/
global/ business/semiconductor/newsView.do?news_
id=893

ICEIS 2008 - International Conference on Enterprise Information Systems

540

