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Abstract: Green computing or energy saving when processing information is primarily considered a task of processor 
development. However, this position paper advocates that a holistic approach is necessary to reduce power 
consumption to a minimum. We discuss the potential of integrating NAND flash memory into DB-based ar-
chitectures and its support by adjusted DBMS algorithms governing IO processing. The goal is to drastically 
improve energy efficiency while comparable performance as is disk-based systems is maintained. 

1 INTRODUCTION 

Recently, green computing gained a lot of attention 
and visibility also triggered by public discussion 
concerning global warming due to increased CO2 
emissions. It was primarily addressed by enhanced 
research and development efforts to reduce power 
usage, heat transmission, and, in turn, cooling needs 
of hardware devices, in particular, processor chips 
using extensive hardware controls. Thermal 
management, however, is a holistic challenge. It 
includes not only simultaneous optimizations in the 
materials, devices, circuits, cores, and chip areas, but 
also combined efforts regarding system architecture 
(e.g., integration of more energy-efficient storage 
devices), system software (e.g., energy-optimal 
application of algorithms), and system management 
(e.g., a control center responding to workload 
changes by allocating/deactivating entire servers). In 
the area of database management systems (DBMSs), 
up-to-date little research work has contributed to this 
important overall goal. But, NAND flash memory 
(also denoted as solid state disk) seems to have the 
potential to become the future store for permanent 
database data, because – compared to magnetic disks 
(disk, for short) – it promises breakthroughs in 
bandwidth (IOps), energy saving, reliability, and 
volumetric capacity (Gray and Fitzgerald, 2007).  

So far, flash memory was considered ideal for 
storing permanent data in embedded devices, 
because it is energy efficient, small, light-weight, 
noiseless, and shock resistant. So, it is used in 
personal digital assistants (PDAs), pocket PCs, or 

digital cameras and provides the great advantage of 
zero-energy needs, when idle or turned off. In these 
cases, flash use could be optimally configured to 
typical single-user workloads known in advance. 
However, not all aspects count for DB servers and 
not all DBMS algorithms can be directly applied 
when processing data on flash. 

2 NAND FLASH-BASED DISKS 

Because NAND flash memory is non-volatile, 
allows for sequential and random block reads/writes, 
and keeps its state even without energy supply, it 
can be compared to disks and can take over the role 
of disks in server environments. Therefore, we call 
such storage units NAND flash-based disks or flash, 
for short. To evaluate their potential when mapping 
DB data to such devices, we briefly sketch – for 
DBMS use – the typical read/write model of disk 
and flash. 

2.1 Read/Write Models 

Disks are devices enabling very fast sequential block 
reads and, at the same time, equally fast writes, 
whereas random block read/writes are much slower 
(requiring substantial “mechanical time fractions”). 
The block size can be configured to the needs of the 
DBMS application with page sizes typically ranging 
between 4KB and 64KB. To hide the access gap be-
tween memory and disk, DBMS use a large DB 
cache in memory (RAM) where (in the simplest 
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case) each cache frame can keep a DB page which, 
in turn, can be mapped to a disk block. In most 
DBMSs, propagation of DB pages follows the 
update-in-place principle applying WAL (Gray and 
Reuter, 1993).  

Flash storage is divided into m equal blocks typi-
cally much larger than DB pages. A flash block nor-
mally contains b (32 – 128) fixed-size pages where a 
page ranges between 512B and 2KB. Because zeros 
cannot be directly written to a page, one must erase 
(reset) the block to all 1’s, before a page can be writ-
ten. Thus, a written page cannot be updated 
anymore, but only freshly written after the entire 
block is erased again. Hence, the block is the unit of 
erasure automatically done by the flash device when 
allocating an empty block. The page is the smallest 
and the block the largest unit of read whereas the 
page is the unit of write; using chained IO, the 
DBMS, however, can write 1 < i ≤ b pages into a 
block at a time. Note, whenever a page is written in-
place, the flash device automatically allocates a new 
block and moves to it all pages from the old block 
together with the updated page (keeping a cluster 
property). This wear leveling (Ban, 2004) is entirely 
transparent to the client, i.e., the DBMS, such that 
all references to displaced pages, e.g., index pointers 
and other links, remain valid.  

Another concern called write endurance and of-
ten cited in the literature is the limited number of 
erase cycles, between 100,000 (older references) and 
5,000,000 (most recent references). When a block 
reaches this erase cycle limit, it cannot be longer 
used and has to be marked as corrupted. Hence, 
management of flash relies on a pool of spare 
blocks; due to the application of wear leveling 
overly frequent overwriting of the same block is 
avoided. 

2.2 Flash Potential 

To gain a deeper and more complete comparative 
picture of disk and flash, we want to outline the 
differences and advantages for IO, power, size, and 
price of both device types and indicate where drastic 
processing improvements and costs can be 
anticipated. Here, we can only summarize the 
evaluation of others (Gray and Fitzgerald, 2007, 
Nath and Kansal, 2007) in a coarse way and give 
indicative numbers or orders of magnitude of gains 
or degradations. Of course, this discussion assumes 
that DBMS algorithms provide adjusted mappings to 
take full advantage of the flash potential. For the 
performance figures, we assume what technology 

currently provides for fast disks (e.g., SCSI 15k 
rpm) and flash (SAMSUNG 2008). 

IO performance: We distinguish different forms 
of IO processing: Sequential IO continuously reads/ 
writes blocks to the device whereas random IO can 
be directly performed to/from any given block 
address.  

Sequential reads and writes on flash having a 
bandwidth of ~90 MBps are comparable to those on 
fast disks. 

• Sequential reads and writes on flash having a 
bandwidth of ~90 MBps are comparable to 
those on fast disks. 

• Random reads on flash are spectacularly faster 
by a factor of 10–15 (2800 IOps compared to 
<200 IOps). 

• Random writes, requiring block erasure first, 
perform worst with ~27 IOps and are slower 
by a factor of 4–8 compared to disks. 

Hence, dramatic bandwidth gains are obtained 
for random reads while random writes are 
problematic and have to be algorithmically 
addressed at the DBMS side. 

Energy consumption: The power needed to drive 
a flash read/write is 0.9 Watt and, hence, by a factor 
of >15 lower than for a disk. Using the figures for 
IOps, we can compute IOps/Watt as another 
indicator for energy-saving potential. Hence, 3,100 
flash-reads and 30 flash-writes can be achieved per 
Watt, whereas a disk only reaches 13 operations per 
Watt. 

Unit size: Starting in 1996, NAND flash chips 
doubled their densities each year and currently pro-
vide 64 Gbit. According to Hwang (2006), this 
growth will continue or accelerate such that 256 
GByte per chip are available in 2012. Because sever-
al of these chips can be packaged as a “disk”, the 
DB community should be prepared for flash drives 
with terabyte capacity in this near future. Hwang 
(2006) also expects the advent of 20 TByte flash 
devices in 2015. Of course, disks will also reach a 
comparable capacity, but flash drives will provide 
further important properties, as outlined in Section 1. 

Price per unit: Today, flash is quite expensive. A 
GByte of flash memory amounts to 20$, but technol-
ogy forecast predicts a dramatic decrease to only 2$/ 
GByte in the near future. Therefore, Gray and 
Fitzgerald (2007) expect that disk and flash of 
comparable capacity will have roughly the same 
price (e.g., ~500$ for an SCSI and ~400$ for a flash 
drive). This assumption allows us to compute IOps/$ 
as an additional measure of comparison. While 
flash-read gets 7.0 IOps/$, flash-write gets poor 0.07 
and an SCSI operation 0.5 IOps/$. Hence, using 

ICEIS 2008 - International Conference on Enterprise Information Systems

536



 

flash, we achieve for the same amount of money 14 
times more reads, but only 1/7 of writes compared to 
disks. 

This evaluation revealed even for a DBMS a 
large optimization potential when its processing 
characteristics can be adjusted in a way that the 
drawbacks are avoided and, at the same time, the 
strengths of flash is exploited as far as possible. 
Here, we want to explore the energy-saving potential 
of DBMSs, in particular, when data caching is used 
together with flash as permanent storage. 

3 DB CACHE MANAGEMENT 

Caching plays a dominant role in all DB-based 
applications and its importance steadily grows with 
the number of Internet applications. In current 
DBMSs, the overall goal of cache management is to 
exploit locality of reference as far as possible 
thereby minimizing IO to the permanent DB on disk. 
When a requested page is not found in the cache, a 
page fault occurs. If a free frame is found in the 
cache, this page can be directly loaded from disk. 
Otherwise, a page replacement algorithm determines 
a “victim” to make room for the request. If the 
victim page is marked as updated, loading has to be 
deferred until this page is written (flushed) to the 
disk. To reduce such wait situations, the cache 
manager often gives such modified pages a 
preferential treatment and flushes them asynchro-
nously (without being evicted) to make them again 
“clean” in the cache.  

Most of the prominent page replacement algo-
rithms, e.g., LRD (Effelsberg and Härder, 1984) or 
LRU-K (O’Neil et al., 1993), proven in disk-based 
DB applications, concentrate on single-page selec-
tions and are not flash-aware, because they do not 
consider the asymmetric cost of read and write or 
even the potential of multi-page fetches, e.g., an en-
tire block content, which can be helpful as a kind of 
prefetching for specific workloads.  

With flash, single-page flush optimization or vic-
tim determination is contra-productive. As a general 
principle, output should be absolutely minimized, 
potentially at the expense of input. Because writes 
need special handling and are, therefore, much more 
expensive than reads, page replacement should bias 
the eviction of read-only pages over modified pages 
which should be collected, before they are flushed. 
Ideally such a collection should fill a block on flash.  

Figure 1: Logical-to-physical data mapping. 

If there is no restriction on page types to be col-
lected for flash mapping, a single cache is sufficient. 
However, if the flash is organized in type-specific 
files, this can be best achieved by type-specific 
caches controlled by a multi-cache manager, which 
only flushes complete blocks. To isolate update 
propagation from logging and recovery concerns, 
e.g., transaction-specific force-writes at commit, a 
no-force strategy is mandatory for modified pages 
(Gray and Reuter, 1993). A no-steal policy for dirty 
pages, i.e., pages modified by still running 
transactions, is not required, as long as the WAL 
principle is observed. Note, there is an important 
dependency between data cache flushes and log 
buffer writes (see Section 4.2).  

Preliminary results show that flash-aware re-
placement using a single cache cannot support most 
workloads well. For scenarios sketched in Section 4, 
multi-cache management may outperform a single 
common LRU- or LRD-based cache by a substantial 
margin (e.g., more than a factor of 2).  

4 MAPPING SCENARIOS 

Flash-aware cache algorithms must address the IO 
asymmetry when performing writes and reads. First, 
let’s look at the physical mapping of flash pages. 
Figure 1 illustrates that the flash can be divided into 
several files whose blocks may be either randomly 
written (e.g., for user and index data) or filled in a 
circular fashion (e.g., for log data). Consecutive data 
pages are often mapped to the same block whereas 
index pages are typically dispersed across several 
blocks. As an additional degree of freedom, the DB 
page size can be chosen as a multiple of the flash 
page size. Thus, a DB page is mapped to one or 
more consecutive flash pages, which, in turn, sets 
two major goals for DB page writing: 
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Figure 2: Out-buffering of pages. 

1. Avoid expensive erasure by using always empty 
blocks for page writing. 

2. Flush collections of modified pages such that 
new blocks are filled without fragmentation. 
To achieve the first goal, writing single or few 

pages (chained IO) always into a new block causes 
tremendous fragmentation in this block. At the end, 
most of the blocks are poorly filled, read 
performance degrades, and flash capacity is wasted. 
Therefore, goal 2 prefers to buffer DB pages for 
output (out-buffer, for short) to fill flash blocks 
completely. Indeed, this avoids fragmentation as 
long as enough empty blocks are available to 
propagate new or modified data. But pages being 
relocated into new blocks leave gaps in their old 
blocks causing fragmentation and later garbage 
collection. Hence, replacement must balance both 
extremes to minimize overall writing. 

Due to different DB page types for indexes, data 
(often chained), log, and temporary data (used for 
external sort and intermediate results), the 
propagation strategy decides whether it is better to 
assign to a block (rather) static together with 
(highly) dynamic pages or to separate them. From an 
application point of view, the context of related user 
data should not be destroyed due to page update 
propagation to preserve locality of data reference. 
On the other hand, maintaining the original block 
assignment of data may be overly expensive due to 
read/write asymmetry. To achieve reasonable page 
mapping with minimum fragmentation and maximal 
locality support, different out-buffering strategies 
(block-building) are possible. 

4.1 Propagation Strategies 

Figure 2 sketches strategies for out-buffering modi-
fied DB pages before flushing them to blocks. 

• In-place: Substituting each page in-place 
avoids fragmentation at all, but requires each 

time the entire flash block to be erased and 
rewritten with all existing data. 

Table 1: Comparison for propagation strategies. 

Strategy single page
writ e

multiple page
write (same 

type)

multiple page 
write (mixed 

types)

in place - | - | + - | - | + - | - | +
relocate o | o | + o | o | + o | o | +
new block + | +  | - + | +  | o o | +  | o

performance | power consumption | fragmentation
-  poor          o  average         +  good

 
• Relocate: Shifting a page to a new physical 

position leaves a gap (outdated page) in the 
present block, but the page can be out-
buffered together with other pages (even 
unmodified pages) to be written into another 
block. 

• Allocate new block: When an empty block is 
used to be filled with new or modified pages, 
the block can be written by chained IO which 
is much more efficient than separate page 
flushes. 

To summarize these ideas, Table 1 shows the 
anticipated performance, power consumption, and 
degree of fragmentation for single-page and out-
buffered- page flushes. The combination of different 
page types to build blocks is disadvantageous for 
sequential data being spread over more blocks than 
necessary when being read later. Table 1 also reveals 
that the straightforward and easy to use in-place 
strategy does not perform well in most of the 
considered aspects. Depending on DBMS 
requirements, different propagation strategies favor 
different design goals (e.g., power, time, cost, 
space); cost-based decisions may choose the best 
strategy even on demand. 

4.2 Mapping Data to Flash 

So far, we have characterized the general properties 
and principles of mapping cached data to flash. For 
that purpose, Gal and Toledo (2005) already present-
ed lower-level algorithms. To become more DB-spe-
cific in our position paper, we propose in the follow-
ing how the mapping can be applied to important 
DBMS processing situations and workloads: 

Log data: The properties of collecting and writ-
ing log data lend themselves perfectly to flash sup-
port. The log file is organized in a circular way and 
new log data is always appended to the current end 
of the log file which makes the log tail to a high-
traffic data element. Because flash blocks are rather 
large, they normally are not filled by the log data of 
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a single transaction. However, repeated log writes of 
consecutively committing transactions to the same 
block would cause a performance-critical bottleneck. 
Therefore, a pool of block-size log buffers should be 
allocated, which are alternately used to enable filling 
of log data while a full block (using chained IO) is 
asynchronously written to flash. For this purpose, 
the concept of group commit was developed for 
which the log data are written in commit sequence 
(at least the end-of-transaction entries) to the log. 
The successful commit is acknowledged to the user 
together with the release of all locks kept by the 
committed transactions when the log data has 
reached stable storage (e.g., flash). If the delayed 
lock release is a performance problem, group 
commit can be combined with pre-commit (see Gray 
and Reuter, 1993) which immediately releases locks 
at the end of the individual transaction Ti although 
the log data is still in a volatile state. The only 
situation that such a transaction may still fail is a 
crash. But then all pre-committed (and other 
running) transactions potentially dependent on the 
updates of this transaction (because of early lock 
release) also fail because their log data appear after 
the log data of Ti. 

Static user data: DB pages containing user data 
are primarily read and rarely updated, hence, almost 
static. In many cases, the physical allocation of DB 
pages on external media is of particular importance, 
e.g., if a cluster property has to be preserved. For 
that reason, data pages should be updated in-place as 
in disk-based systems, i.e., n single-page updates re-
quire n block writes. Note, wear leveling does not 
affect the cluster property at the block level, because 
random page reads are not sensitive to physical 
neighbourhood of blocks. Hence, management of 
DB pages within a block provides new opportunities 
to reallocate data on flash without loosing 
performance. 

Append-on data: User data is often appended to 
the end of a file by using sequential numbering 
scheme for primary keys or to ordered XML trees 
which are right-growing when new order-dependent 
data is attached. In this case, the usage of a pool of 
block-size buffers, similar to that for log data, can 
dramatically improve the performance. 

Dynamic user data: In such a scenario, page up-
dates are assumed to be so frequent that block 
update in-place is too expensive because of a 
substantial number of single-page writes and, in 
turn, energy consumption. Therefore, we sacrifice 
the cluster property (automatically preserved for in-
place block updates by the flash) and propose a  

Figure 3: DBMS-controlled mapping to flash. 

DBMS-controlled relocation, as illustrated in Figure 
3. Modified pages are out-buffered until an entire 
block can be written. Administration information in 
the form of block info and page mapping is 
maintained by the DBMS and remains in memory. 
To enable recovery from a crash, the DBMS saves 
sufficient redundancy in a log file. Hence, if a flash 
block can store d DB pages, DBMS-controlled 
relocation reduces the write overhead of n pages to 
n/d block writes. 

Index data: Index maintenance provides similar 
update frequencies as dynamic user data and, there-
fore, we propose a similar DBMS-controlled 
mapping (Figure 3). A first prototype of flash-aware 
index algorithms was developed by Nath and Kansal 
2007, where memory had to cope with severe size 
restrictions. Although they omitted scalability 
considerations, they emphasized the need for 
flexible index maintenance to reduce expensive 
write operations. Due to the frequent but small 
changes within an index node, it is better to collect 
corresponding log information for that node update 
instead of flushing every single modification 
separately. Moreover, index traversals accessing 
single dispersed pages profit from the random-read 
speed of the flash. Other B*-tree operations, such as 
merge and split, may be deferred or covered by the 
same logging mechanism. 

Hot spots: A critical task is the management of 
data which is updated with a high repetition rate 
(hot-spot data). The use of NAND flash implies the 
need of an adjusted approach. Due to their high 
locality of reference, the cache manager would never 
evict them for replacement in case of a no-force 
policy. The normal logging component is used to 
collect the needed redundancy to guarantee the 
ACID properties in case of a crash. To enable reuse 
of the log space, hot-spot data must eventually reach 
the stable storage. Therefore, a checkpointing 
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mechanism should be applied to periodically flush 
hot-spot pages using the normal out-buffer method. 

4.3 Further Optimization Options 

The forms of mapping and their effectivity/energy- 
saving potential discussed so far could be further en-
hanced by a number of optional methods. 

Workload analysis: To optimize the read/write 
ratio, the cache manager may predict access patterns 
or pro-actively tolerate performance degradations to 
gain additional benefit for later read operations. For 
example, flushing sequentially referenced pages im-
mediately may increase current write costs. But, be-
cause re-reference probability is very low such that 
the cache space freed may amortize the initial 
writing costs. Besides reducing gaps in existing 
blocks, a suitable propagation strategy compares 
write and read operations within a workload for a 
specific page type or each page individually. Hence, 
the cache manager has to distinguish between page 
types and their future usage. 

Database design: Defining a flash-aware DB 
schema should reduce index usage or redundant data 
structures, because updates would affect too many 
pages. A higher amount of data to read, even for se-
lective accesses or joins, may compensate the other-
wise unacceptable update costs for such redundant 
data. 

Replacement urgency: Regarding power con-
sumption and latency for write compared to a read 
operation, the cache may prefer to eagerly drop non- 
modified pages. Indeed, modified pages may benefit 
from a deferred flush, as long as WAL is used and 
data consistency is assured. Thus, a page may be 
replaced containing modifications from several 
transactions resulting in one instead of multiple 
block writes (no-force policy). 

5 SUMMARY AND OUTLOOK 

We outlined the specific properties of NAND flash 
when used as persistent devices in DB servers. Al-
though magnetic disks with salient and proven 
performance and reliability properties and, above all, 
acceptable capacities (512GByte and larger) will be 
available on the market, flash disks may provide 
even superior properties in the near future. The 
dramatic reduction of energy consumption and the 
potential to read random data nearly as fast as 
sequential data are outstanding advantages which 
make NAND flash memory to an almost perfect 
hard disk alternative. Because of the problematic 

erase operation of flash blocks, DBMS algorithms 
and, above all, the mapping between cache memory 
and flash disk have to be adjusted to reach the best 
performance possible. We illustrated the op-
portunities and draw-backs of various mapping sce-
narios and developed ideas for optimization. 
Primarily, the collection of data pages in block-size 
memory buffers may greatly improve the 
performance. 

Currently, we are working on the integration of 
flash memory into a DBMS and its adaptation 
providing a flash-aware cache together with 
enhanced mapping algorithms. Other hot topics for 
the improvement of energy efficiency in DBMSs is 
the use of specialized logging techniques and group 
commit as well as cost-based query optimization 
regarding energy consumption as a prime cost 
factor. 
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