Acknowledgements
This study is supported by The Scientific and Technological Research Council of
Turkey (TUBITAK).
References
1. G. Barton, P. Lisboa, A. Lees, S. Attfield, “Gait quality assessment using self-organizing
artificial neural networks”, Gait and Posture, vol. 25, pp. 374-379, 2007
2. M. Kohle , D. Merkl , J. Kastner, “Clinical gait analysis by neural networks: issues and
experiences”, in Proceedings of the 10th IEEE Symposium on Computer-Based Medical
Systems 1997, pp.138
3. N. Sen Koktas, N. Yalabik, G. Yavuzer, “Ensemble Classifiers for Medical Diagnosis of
Knee Osteoarthritis Using Gait Data”, in Proceeding of IEEE International Conference on
Machine Learning and Applications, 2006, pp. 225-230
4. R. K. Begg, M. Palaniswami, B. Owen, “Support Vector Machines for Automated Gait
Classification”, IEEE Transactions On Biomedical Engineering, vol. 52, pp. 828-838, 2005
5. L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. Wiley-
Interscience, 2004
6. J. Kittler, M. Hatef, R. P. W. Duin, J. Matas, “On Combining Classifiers”, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 226-239, 1998
7. H. Gök, S. Ergin, G. Yavuzer, ”Kinetic and kinematic characteristics of gait in patients
with medial knee arthritis” , Acta Orthop Scand, vol. 73, pp. 647–652, 2002
8. K. J. Deluzio, J. L. Astephen, “Biomechanical features of gait waveform data associated
with knee osteoarthritis: An application of principal component analysis”, Gait and Posture,
vol. 25, pp. 86-93, 2007
9. Kaufman, K., Hughes, C., Morrey, B., Morrey, M., An, K., “Gait characteristics of patients
with knee osteoarthritis”, Journal of Biomechanics,, vol. 34, pp. 907–915, 2001
10. Anil K. Jain , Robert P. W. Duin , Jianchang Mao, “Statistical Pattern Recognition: A
Review”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 4-
37, 2000
11. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification. John Wiley and Sons, New
York, 2001
12. R.P.W Duin, PRTOOLS (version 4). A Matlab toolbox for pattern recognition. Pattern
Recognition Group, Delft University of Technology, February 2004
13. Decision Support Systems, January 2008, http://www.openclinical.org/dss.html
14. R. A. Miller, F.E. Masarie, “Use of the Quick Medical Reference (QMR) program as a tool
for medical education”, Methods of Information in Medicine, vol. 28, pp.340-5, 1989
15. DXPlain, January 2008, http://lcs.mgh.harvard.edu/projects/dxplain.html
16. E. Coiera. The Guide to Health Informatics (2nd Edition). Arnold, London, October 2003.
17. K. Kawamoto, “Improving clinical practice using clinical decision support systems: a
systematic review of trials to identify features critical to success”, BMJ, vol. 330, pp. 330-
765, 2005
37