2. Cabanes, G., Bennani, Y.: A simultaneous two-level clustering algorithm for automatic
model selection. In: Proceedings of the International Conference on Machine Learning and
Applications (ICMLA’07), Cincinnati, Ohio, USA (2007)
3. Cabanes, G., Bennani, Y.: A Local Density-Based Simultaneous Two-Level Algorithm for
Topographic Clustering. In: Proceeding of the International Joint Conference on Neural
Networks (IJCNN’08), Hong Kong, China (2008)
4. Aupetit, M.: Learning topology with the generative gaussian graph and the em algorithm.
In: NIPS. (2005)
5. Bohez, E.L.J.: Two level cluster analysis based on fractal dimension and iteratedfunction
systems (ifs) for speech signal recognition. IEEE Asia-Pacific Conference on Circuits and
Systems (1998) 291–294
6. Hussin, M.F., Kamel, M.S., Nagi, M.H.: An efficient two-level SOMART document cluster-
ing through dimensionality reduction. In: ICONIP. (2004) 158–165
7. Ultsch, A.: Clustering with SOM: U*C. In: Proceedings of the Workshop on Self-Organizing
Maps. (2005) 75–82
8. Gu
´
erif, S., Bennani, Y.: Selection of clusters number and features subset during a two-levels
clustering task. In: Proceeding of the 10th International Conference Artificial intelligence
and Soft Computing 2006, Palma de Mallorca, Spain (2006) 28–33
9. Korkmaz, E.E.: A two-level clustering method using linear linkage encoding. International
Conference on Parallel Problem Solving From Nature, Lecture Notes in Computer Science
4193 (2006) 681–690
10. Kohonen, T.: Self-Organization and Associative Memory. Springer-Verlag, Berlin (1984)
11. Kohonen, T.: Self-Organizing Maps. Springer-Verlag, Berlin (2001)
12. Martinetz, T.: Competitive hebbian learning rule forms perfectly topology preserving maps.
In Gielen, S., Kappen, B., eds.: Proceedings of the International Conference on Artificial
Neural Networks (ICANN-93), Amsterdam, Heidelberg, Springer (1993) 427–434
13. Pamudurthy, S.R., Chandrakala, S., Sakhar, C.C.: Local density estimation based clustering.
Prodeeding of International Joint Conference on Neural Networks (2007) 1338–1343
14. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immer-
sion simulation. IEEE Trans. Pattern Anal. Mach. Intell. 13 (1991) 583–598
15. Yue, S.H., Li, P., Guo, J.D., Zhou, S.G.: Using greedy algorithm: DBSCAN revisited II.
Journal of Zhejiang University SCIENCE 5 (2004) 1405–1412
16. Hamilton, W.: The genetical evolution of social behaviour. Journal of Theoretical Biology 7
(1964) 1–52
17. Fresneau, D.: Individual foraging path fidelity: a novel strategy in a ponerine ant. Ins. Soc.
32 (1985) 109–116
18. Goss, S., Fresneau, D., Deneubourg, J.L., Lachaud, J.P., Valenzuela-Gonzalez, J.: Individual
foraging in the ant Pachycondyla apicalis. Oecologia 80 (1989) 65–69
19. Streit, S., Bock, F., Pirk, C.W.W., Tautz, J.: Automatic life-long monitoring of individual
insect behaviour now possible. Zoology 106 (2003) 169–171
20. Sammon Jr., J.: A nonlinear mapping for data structure analysis. 18 (1969) 401–409
21. Fresneau, D., Dupuy, P.: Behavioural study of the primitive ant Neoponera apicalis. Anim.
Behav. 36 (1988) 1389–1399
72