weaknesses of a hierarchy-based vector construction approach as identified in [10, 11],
such as the non-standard density of the hierarchy, and different philosophies in map-
ping lexical senses to ontology classes. We therefore plan to explore the effect of using
hierarchy-free CVs, i.e. construction by emergence. Realising that the M&C study is
more concerned with lexical similarity, we will also collect human judgement ratings
pertaining to lexical semantic relatedness as a more suitable benchmark.
Acknowledgements
This work was funded by a ScienceFund grant (No. 01-01-05-SF0011) from the Malaysian
Ministry of Science, Technology and Innovation, and a Research University Grant from
Universiti Sains Malaysia. We thank Dr Chan Huah Yong, Michael Cheng and Aloysius
Indrayanto for use of their grid computing facilities, and the four anonymous reviewers
for their comments.
References
1. Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. 6 (1991)
2. Salton, G.: The smart document retrieval project. In: Proc. of the 14th Annual Int’l
ACM/SIGIR Conf. on Research and Development in Information Retrieval, Chicago (1991)
3. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by
latent semantic analysis. Journal of the American Society of Information Science 41 (1990)
4. Harris, Z.S., Gottfried, M., Ryckman, T., Mattick Jr., P., Daladier, A., Harris, T., Harris, S.:
The form of Information in Science, Analysis of Immunology Sublanguage. Volume 104 of
Boston Studies in the Philosophy of Science. Kluwer Academic Publisher, Dordrecht (1989)
5. Hjelmlev, L.: Prol
´
egol
`
eme
`
a une th
´
eorie du langage.
´
editions de minuit (1968)
6. Wierzbicka, A.: Semantics: Primes and Universals. Oxford University Press (1996)
7. Greimas, A.J.: Structural Semantics: An Attempt at a Method. University of Nebraska Press
(1984)
8. Schwab, D., Lim, L.T., Lafourcade, M.: Conceptual vectors, a complementary tool to lexical
networks. In: Proc. of the 4th Int’l Workshop on Natural Language Processing and Cognitive
Science (NLPCS 2007), Funchal, Madeira, Portugal (2007)
9. Lafourcade, M., Prince, V.: Synonymy and conceptual vectors. In: NLPRS’2001, Tokyo,
Japon (2001)
10. Schwab, D.: Approche hybride - lexicale et th
´
ematique - pour la mod
´
elisation, la d
´
etection
et l’exploitation des fonctions lexicales en vue de l’analyse s
´
emantique de texte. PhD thesis,
Universit
´
e Montpellier 2 (2005)
11. Lafourcade, M.: Conceptual vector learning - comparing bootstrapping from a thesaurus or
induction by emergence. In: LREC’2006, Genoa, Italia (2006)
12. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to WordNet:
An on-line lexical database. International Journal of Lexicography (special issue) 3 (1990)
13. Niles, I., Pease, A.: Linking lexicons and ontologies: Mapping WordNet to the Suggested
Upper Merged Ontology. In: Proc. of the IEEE Int’l Conf. on Information and Knowledge
Engineering. (2003)
14. Resnik, P.: Using information content to evaluate semantic similarity. In: Proc. of the 15th
Int’l Joint Conf. on Artificial Intelligence, Montreal, Canada (1995)
15. Budanitsky, A., Hirst, G.: Evaluating WordNet-based measures of lexical semantic related-
ness. Computational Linguistics 32 (2006)
158