4. Papineni, K., Kishore, A., Roukos, S., Ward, T., Zhu, W.: Bleu: A method for automatic eval-
uation of machine translation. In: Technical Report RC22176 (W0109-022), IBM Research
Division, Thomas J. Watson Research Center, Yorktown Heights, NY (2001)
5. Banerjee, S., Lavie, A.: METEOR: An automatic metric for MT evaluation with improved
correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and
Extrinsic Evaluation Measures for Machine Translation and/or Summarization, Ann Arbor,
Michigan, Association for Computational Linguistics (2005) 65–72
6. Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of translation edit
rate with targeted human annotation. In: Proceedings of AMTA. (2006)
7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20 (1995) 273–297
8. Vapnik, V.N.: The nature of statistical learning theory. Springer-Verlag New York, Inc., New
York, NY, USA (1995)
9. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for
interdependent and structured output spaces. In: ICML ’04: Proceedings of the twenty-first
international conference on Machine learning, New York, NY, USA, ACM (2004) 104
10. Weston, J., Watkins, C.: Multi-class support vector machines (1998)
11. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based
vector machines. J. Mach. Learn. Res. 2 (2002) 265–292
12. Joachims, T.: Training linear svms in linear time. In: KDD ’06: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining, New
York, NY, USA, ACM (2006) 217–226
13. Joachims, T.: Learning to align sequences: A maximum-margin approach (2003)
14. Joachims, T.: Making large-scale support vector machine learning practical. In B. Sch´olkopf,
C. Burges, A.S., ed.: Advances in Kernel Methods: Support Vector Machines. MIT Press,
Cambridge, MA (1998)
15. Yu, C.N.J., Joachims, T., Elber, R., Pillardy, J.: Support vector training of protein alignment
models. In: RECOMB. (2007) 253–267
16. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (1998)
17. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Largemargin methods for structured
and interdependent output variables. Journal of Machine Learning Research 6 (2005) 1453–
1484
18. Ortiz-Mart´ınez, D., Garc´ıa-Varea, I., Casacuberta, F.: Thot: a toolkit to train phrase-based
statistical translation models. In: Tenth Machine Translation Summit. AAMT, Phuket, Thai-
land (2005)
19. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B.,
Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., Herbst, E.: Moses: Open
source toolkit for statistical machine translation. Annual Meeting of the Association for
Computational Linguistics (ACL), demonstration session (2007)
20. Casacuberta, F., Ney, H., Och, F.J., Vidal, E., Vilar, J.M., Barrachina, S., Garcia-Varea, I.,
D. Llorens, C.M., Molau, S., Nevado, F., Pastor, M., Pico, D., Sanchis., A.: Some approaches
to statistical and finite-state speech-to-speech translation. Computer Speech and Language
18 (2004) 25–47