These results would corroborate the relation between alignment quality and translation
quality, demonstrating so the appropriateness of finite mixture modeling in SMT.
Alternatively, it would be interesting to develop mixture extensions of superior IBM
models, like Model 4 and 5, or the log-linear Model 6 [9] to fairly valorate the contri-
bution of mixture modeling to state-of-the-art alignment results.
References
1. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley (2000)
2. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via
the EM algorithm (with discussion). Journal of the Royal Stat. Society B 39 (1977) 1–38
3. Wu, C.: On the convergence properties of the EM algorithm. The Annals of Statistics 11
(1983) 95–103
4. Civera, J., Juan, A.: Mixtures of IBM Model 2. In: Proc. of EAMT’06. (2006) 159–167
5. Zhao, B., Xing, E.P.: BiTAM: Bilingual Topic AdMixture Models for Word Alignment. In:
Proc. of COLING/ACL’06. (2006)
6. Civera, J., Juan, A.: Domain adaptation in statistical machine translation with mixture mod-
elling. In: Proc. of the 2nd Workshop in Statistical Machine Translation. (2007) 177–180
7. Brown, et al.: A Statistical Approach to Machine Translation. Comp.Ling. 16 (1990) 79–85
8. Brown, et al.: The Mathematics of Statistical Machine Translation: Parameter Estimation.
Comp.Ling. 19 (1993) 263–311
9. Och, F.J., Ney, H.: A systematic comparison of various statistical alignment models.
Comp.Ling. 29 (2003) 19–51
10. Mihalcea, R., Pedersen, T.: An evaluation exercise for word alignment. In: Proc. of the
HLT-NAACL’03: Workshop on Building and using parallel texts. (2003) 1–10
11. Taskar, B., Lacoste-Julien, S., Klein, D.: A discriminative matching approach to word align-
ment. In: Proc. of HLT’05. (2005) 73–80
12. Blunsom, P., Cohn, T.: Discriminative word alignment with conditional random fields. In:
Proc. of ACL ’06. (2006) 65–72
13. Zhao, B., Vogel, S.: Word alignment based on bilingual bracketing. In: Proc. of the HLT-
NAACL’03: Workshop on Building and using parallel texts. (2003) 15–18
14. Koehn, P., et al.: Statistical phrase-based translation. In: Proc. of NAACL’03. (2003) 48–54
15. Och, F.J., Ney, H.: The alignment template approach to statistical machine translation.
Comp.Ling. 30 (2004) 417–449
16. Chiang, D.: Hierarchical phrase-based translation. Comp.Ling. 33 (2007) 201–228
17. Callison-Burch, C., et al.: (meta-) evaluation of machine translation. In: Proc. of the Second
Workshop on Statistical Machine Translation, Prague, Czech Republic (2007) 136–158
18. Melamed, I.: Manual annotation of translational equivalence: The blinker project. Technical
Report 98-07, Institute for Research in Cognitive Science (1998)
19. Fraser, A., Marcu, D.: Getting the structure right for word alignment: LEAF. In: Proc. of
EMNLP-CoNLL’07. (2007) 51–60
20. Fraser, A., Marcu, D.: Measuring word alignment quality for statistical machine translation.
Comp.Ling. 33 (2007) 293–303
21. Ayan, N.F., Dorr, B.J.: Going beyond AER: an extensive analysis of word alignments and
their impact on MT. In: Proc. of CONLING/ACL’06. (2006) 9–16
22. Germann, U.: Aligned hansards of the 36th parliament of canada. http://www.isi.edu/natural-
language/download/hansard/index.html (2001)
23. Och, F., Ney, H.: Improved statistical alignment models. In: Proc. of ACL. (2000) 440–447
24. Koehn, P., et al.: Moses: Open source toolkit for statistical machine translation. In: Proc. of
ACL’07: Demo and Poster Sessions. (2007) 177–180