experimental evaluation is that kPCA reduction leads to an improvement of the classifi-
cation accuracy compared to all other systems in general. In particular we observe that
the novel approach with kernelized PCA outperforms the former approach with linear
PCA in four out of six cases.
References
1. Duda, R., Hart, P., Stork, D.: Pattern Classification. 2nd edn. Wiley-Interscience (2000)
2. Jain, A., Dubes, R.: Algorithms For Clustering Data. Prentice-Hall, Englewood Cliffs, NJ
(1988)
3. Jolliffe, I.: Principal Component Analysis. Springer (1986)
4. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern
recognition. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3) (2004) 265–
298
5. G¨artner, T.: A survey of kernels for structured data. SIGKDD Explorations 5(1) (2003)
49–58
6. Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means of pro-
totype selection. In Escolano, F., Vento, M., eds.: Proc. 6th Int. Workshop on Graph Based
Representations in Pattern Recognition. LNCS 4538 (2007) 383–393
7. Riesen, K., Kilchherr, V., Bunke, H.: Reducing the dimensionality of vector space embed-
dings of graphs. In Perner, P., ed.: Proc. 5th Int. Conf. on Machine Learning and Data Mining.
LNAI 4571, Springer (2007) 563–573
8. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Ma-
chines. World Scientific (2007)
9. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern
Recognition Letters 1 (1983) 245–253
10. Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the edit dis-
tance of graphs. In Escolano, F., Vento, M., eds.: Proc. 6th Int. Workshop on Graph Based
Representations in Pattern Recognition. LNCS 4538 (2007) 1–12
11. Wilson, R., Hancock, E., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans.
on Pattern Analysis ans Machine Intelligence 27(7) (2005) 1112–1124
12. Wilson, R., Hancock, E.: Levenshtein distance for graph spectral features. In: Proc. 17th Int.
Conf. on Pattern Recognition. Volume 2. (2004) 489–492
13. Luo, B., Wilson, R., Hancock, E.: Spectral embedding of graphs. Pattern Recognition 36(10)
(2003) 2213–2223
14. Duin, R., Pekalska, E.: The Dissimilarity Representations for Pattern Recognition: Founda-
tions and Applications. World Scientific (2005)
15. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press (1996)
16. Sch¨olkopf, B., Smola, A., M¨uller, K.R.: Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation 10 (1998) 1299–1319
17. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge Univer-
sity Press (2004)
18. Sch¨olkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)
19. Bianchini, M., Gori, M., Sarti, L., Scarselli, F.: Recursive processing of cyclic graphs. IEEE
Transactions on Neural Networks 17(1) (2006) 10–18
20. Dosch, P., Valveny, E.: Report on the second symbol recognition contest. In Wenyin, L.,
Llad´os, J., eds.: Graphics Recognition. Ten years review and future perspectives. Proc. 6th
Int. Workshop on Graphics Recognition (GREC’05). LNCS 3926, Springer (2005) 381–397