REFERENCES
Booker, L. B., Goldberg, D. E., and F., H. J. (1990). Clas-
sifier systems and genetic algorithms. In Carbonell,
J. G., editor, Machine Learning. Paradigms and Meth-
ods, pages 235–282. MIT Press, Boston.
Chan, C. C. and Grzymala-Busse, J. W. (1991). On the
attribute redundancy and the learning programs ID3,
PRISM, and LEM2. Technical report, Department of
Computer Science, University of Kansas.
Grzymala-Busse, J. W. (1988). Knowledge acquisition un-
der uncertainty—A rough set approach. Journal of
Intelligent & Robotic Systems, 1:3–16.
Grzymala-Busse, J. W. (1991). On the unknown attribute
values in learning from examples. In Proceedings
of the ISMIS-91, 6th International Symposium on
Methodologies for Intelligent Systems, pages 368–
377.
Grzymala-Busse, J. W. (1997). A new version of the rule
induction system LERS. Fundamenta Informaticae,
31:27–39.
Grzymala-Busse, J. W. (2002). MLEM2: A new algorithm
for rule induction from imperfect data. In Proceed-
ings of the 9th International Conference on Informa-
tion Processing and Management of Uncertainty in
Knowledge-Based Systems, (IPMU 2002), pages 243–
250.
Grzymala-Busse, J. W. (2003). Rough set strategies to data
with missing attribute values. In Workshop Notes,
Foundations and New Directions of Data Mining, in
conjunction with the 3-rd International Conference on
Data Mining, pages 56–63.
Grzymala-Busse, J. W. (2004). Three approaches to miss-
ing attribute values—a rough set perspective. In Pro-
ceedings of the Workshop on Foundation of Data Min-
ing, in conjunction with the Fourth IEEE International
Conference on Data Mining, pages 55–62.
Grzymala-Busse, J. W. and Grzymala-Busse, W. J. (2007).
An experimental comparison of three rough set ap-
proaches to missing attribute values. In Peters, J. F.
and Skowron, A., editors, Transactions on Rough Sets,
pages 31–50. Springer-Verlag, Berlin, Heidelberg.
Grzymala-Busse, J. W. and Hu, M. (2000). A comparison
of several approaches to missing attribute values in
data mining. In Proceedings of the Second Interna-
tional Conference on Rough Sets and Current Trends
in Computing, pages 340–347.
Grzymala-Busse, J. W. and Rzasa, W. (2006). Local and
global approximations for incomplete data. In Pro-
ceedings of the RSCTC 2006, the Fifth International
Conference on Rough Sets and Current Trends in
Computing, pages 244–253.
Grzymala-Busse, J. W. and Rzasa, W. (2007). Definabil-
ity of approximations for a generalization of the indis-
cernibility relation. In Proceedings of the 2007 IEEE
Symposium on Foundations of Computational Intelli-
gence (IEEE FOCI 2007), pages 65–72.
Grzymala-Busse, J. W. and Wang, A. Y. (1997). Modified
algorithms LEM1 and LEM2 for rule induction from
data with missing attribute values. In Proceedings of
the Fifth International Workshop on Rough Sets and
Soft Computing (RSSC’97) at the Third Joint Confer-
ence on Information Sciences (JCIS’97), pages 69–72.
Holland, J. H., Holyoak, K. J., and Nisbett, R. E. (1986).
Induction. Processes of Inference, Learning, and Dis-
covery. MIT Press, Boston.
Kryszkiewicz, M. (1995). Rough set approach to incom-
plete information systems. In Proceedings of the
Second Annual Joint Conference on Information Sci-
ences, pages 194–197.
Kryszkiewicz, M. (1999). Rules in incomplete information
systems. Information Sciences, 113:271–292.
Lin, T. Y. (1992). Topological and fuzzy rough sets. In
Slowinski, R., editor, Intelligent Decision Support.
Handbook of Applications and Advances of the Rough
Sets Theory, pages 287–304. Kluwer Academic Pub-
lishers, Dordrecht, Boston, London.
Pawlak, Z. (1982). Rough sets. International Journal of
Computer and Information Sciences, 11:341–356.
Pawlak, Z. (1991). Rough Sets. Theoretical Aspects of Rea-
soning about Data. Kluwer Academic Publishers,
Dordrecht, Boston, London.
Slowinski, R. and Vanderpooten, D. (2000). A generalized
definition of rough approximations based on similar-
ity. IEEE Transactions on Knowledge and Data Engi-
neering, 12:331–336.
Stefanowski, J. and Tsoukias, A. (1999). On the exten-
sion of rough sets under incomplete information. In
Proceedings of the RSFDGrC’1999, 7th International
Workshop on New Directions in Rough Sets, Data
Mining, and Granular-Soft Computing, pages 73–81.
Stefanowski, J. and Tsoukias, A. (2001). Incomplete infor-
mation tables and rough classification. Computational
Intelligence, 17:545–566.
Wang, G. (2002). Extension of rough set under in-
complete information systems. In Proceedings of
the IEEE International Conference on Fuzzy Systems
(FUZZ IEEE’2002), pages 1098–1103.
Yao, Y. Y. (1998). Relational interpretations of neighbor-
hood operators and rough set approximation opera-
tors. Information Sciences, 111:239–259.
ICSOFT 2008 - International Conference on Software and Data Technologies
248