poral knowledge from the timed observations con-
tained in a database. One of the main advantage of
the models of the TOM4D methodology is to be hu-
manly understandable.
The methodology is applied to a real world prob-
lem: the hydraulic dam of Cublize (France). The re-
sulting models have then been validated by the hy-
draulic dam Expert’s of the Cemagref, the French
governmental organization that assumes the security
of French hydraulic civil engineering structures. Our
current works are oriented towards the adaptation of
Reiter’s algorithm of diagnosis to timed observations
and the generalization of this modeling approach to
introduce a recursive principle of modeling.
REFERENCES
Abu-Hanna, A., Benjamins, R., and Jansweijer, W. (1991).
Device understanding and modeling for diagnosis.
IEEE Expert, 6(2):26–31.
Basseville, M. and Cordier, M.-O. (1996). Surveil-
lance et diagnostic de syst`emes dynamiques : ap-
proche compl´ementaire du traitement de signal et de
l’intelligence artificielle. Rapport.
Chittaro, L., Guida, G., Tasso, C., and Toppano, E. (1993).
Functional and teological knowledge in the multimod-
eling approach for reasoning about physical systems:
A case study in diagnosis. IEEE Transactions on sys-
tems.
Clancey, W. (1987). Heuristic classification. Artificial In-
telligence, 25(3):289–350.
Dague, P. (2001). Th´eorie logique du diagnostic `a base de
mod`eles. Diagnostic, Intelligence Artificielle et Re-
connaissance des Formes, pages 17–105.
Davis, R. (1984). Diagnostic reasoning based on structure
and behavior. Artificial Intelligence, 24:347–410.
De Kleer, J. and Brown, J. (1984). A Qualitative Physics
Confluences. Artificial Intelligence, 24:7–83.
Falkeihainer, B. and Forbus, K. D. (1988). Seting up large
scale qualitative models. In Proceedings of the 7th
National Conference of Artificial Intelligence, pages
301–306, St. Paul, MN, USA.
Falkeihainer, B. and Forbus, K. D. (1991). Compositional
modeling: Finding the right model for the job. Artifi-
cial Intelligence, 51:95–143.
Forbus, K. et al. (1984). Qualitative Process Theory. Artifi-
cial Intelligence, 24(1-3):85–168.
Franke, D. W. (1991). Deriving and using descriptions of
purpose. IEEE Expert, 6(2):41–47.
Hayes, P. (1989). Naive physics I: ontology for liquids.
Morgan Kaufmann Publishers Inc. San Francisco, CA,
USA.
Le Goc, M. (2004). Sachem, a real time intelligent diagno-
sis system based on the discrete event paradigm. Sim-
ulation, The Society for Modeling and Simulation In-
ternational Ed., 80(11):591–617.
Le Goc, M. (2006). Notion d’Observation pour le Di-
agnostic des Processus Dynamiques: Application `a
Sachem et `a la d´ecouverte de Connaissances Tem-
porelles. Hdr, Facult´e des Sciences et Techniques de
Saint J´erˆome, Marseille, France.
Le Goc, M. and B´enayadi, N. (2008). Dicovering expert’s
knowledge from sequences of discrete event class oc-
currences. In To appear in the proceedings of the 10th
International Conference on Enterprise Information
Systems (ICEIS08), Barcelona, Spain, 12-16th of June
2008.
Le Goc, M., Bouch´e, P., and Giambiasi, N. (2005). Stochas-
tic modeling of continuous time discrete event se-
quence for diagnosis. 16th International Workshop on
Principles of Diagnosis (DX’05) Pacific Grove, Cali-
fornia, USA.
Lee, W. and Kuipers, B. (1988). Non-Intersection of Trajec-
tories in Qualitative Phase Space: A Global Constraint
for Qualitative Simulation. Proceedings of the Seventh
National Conference on Artificial Intelligence, AAAI-
88, pages 286–291.
Masse, E. and Le Goc, M. (2007). Modeling dynamic
systems from their behavior for a multi model based
diagnosis. In Proceedings of the 18th International
Workshop on the Principles of Diagnosis (DX’07),
Nashville, TN, USA, May 29-31 2007.
Murthy, S. (1988). Qualitative reasoning at multiple reso-
lutions. Proceedings of the National Conference on
Artificial Intelligence, pages 296–300.
Reiter, R. (1987). A theory for diagnosis for first principles.
Artificial Intelligence, 32:57–95.
Rosenberg, R. and Karnopp, D. (1983). Introduction to
Physical System Dynamics. McGraw-Hill, Inc. New
York, NY, USA.
Schreiber, A., Akkermans, J. M., Anjewierden, A. A.,
de Hogg, R., Shadbolt, N. R., Van de Velde, W., and
Wielinga, B. J. (2000). Knowledge Engineering and
Management, The CommonKADS Methodology. MIT
Press.
Struss, P. and Dressler, O. (1989). Physical negation –
integrating fault models into the general diagnostic
engine. In Proceedings of the 11th International
Joint Conference on Artificial Intelligence (IJCAI-89),
pages 1318–1323.
Thetiot, R. (1999). Utilisation de l’Approche Multi-
mod`eles pour l’Aide au Diagnostic d’Installations In-
dustrielles. Phd in sciences, Universit´e d’Evry Val
d’Essonne, France.
Zanni, C., Le Goc, M., and Frydman, C. (2005). A con-
ceptual framework for the analysis, classification and
choice of knowledge-based diagnosis systems.
Zouaoui, F., Th´etiot, R., and Dumas, M. (1997). Multimod-
eling representation of pwr primary coolant loop. In
Proceedings Poster of International Joint Conference
on Artificial Intelligence (IJCAI-97), page 116.
ICSOFT 2008 - International Conference on Software and Data Technologies
256